Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11224
Title: Design, Modeling and Simulation of Planar Waveguide Time Domain Optical Fourier Transformer
Authors: Tang, Rui
Advisor: Li, Xun
Shiva Kumar, Chih-Hung Chen
Shiva Kumar, Chih-Hung Chen
Department: Electrical and Computer Engineering
Keywords: Time Domain Optical Fourier Transformer;Planar Waveguide;Electromagnetics and photonics;Electromagnetics and photonics
Publication Date: Oct-2011
Abstract: <p>A novel planar waveguide Time Domain Optical Fourier Transformer (TD-OFT), which is composed of waveguide lenses and blazed phase gratings, is proposed. A detailed mathematical derivation based on scalar diffraction optics is presented. In order to verify the theoretical analysis, the reciprocity in TD-OFT is also studied. Three different pulse examples, including the Gaussian pulse, square pulse and square pulse train, are implemented by analytical formulations. To evaluate the device performance, the similarity coefficient is defined. The results show that the similarity increases as the device aperture increases. However, there is trade-off between the similarity and the spectra resolution. For the input pulse, under the circumstance of same similarity, the shorter temporal pulse duration (larger bandwidth) needs smaller aperture size. Improved waveguide lens is particularly designed and then the whole device is simulated by Extension of BPM (EX-BPM) with two specific pulses, Gaussian and raised cosine pulse. The simulation results are also verified by reciprocity theorem using the numerical method. The designed TD-OFT occupies a size about 600μm (in width)×5mm (in length) for an ultrafast pulse around 10fs. It is possible to make the device size even smaller either by reducing the focal length of the collimating lens or enlarging the bandwidth of input pulse. Compared with currently proposed TD-OFT made by discrete photonic and optoelectronic components, this design can be integrated with a more compact size and seems more appealing on the simulated performance and fabrication cost. As a result, the planar waveguide TD-OFT has great potential in the next ultrafast optical network.</p>
URI: http://hdl.handle.net/11375/11224
Identifier: opendissertations/6208
7217
2247513
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.98 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue