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Abstract 
With the development of ultrafast pulse technology, Time Domain Optical Fourier 

Transformer (TD-OFT) has been a popular research topic. It can be used in various 

applications such as ultrafast optical communication, spectro-temporal imaging, 

time-resolved spectroscopy and optical signal processing. By utilizing planar waveguide 

lenses and diffraction gratings, a novel TD-OFT is proposed in this thesis. Compared with 

the currently developed TD-OFT made by the discrete photonic and optoelectronic 

component, this device can offer the intrinsic advantage of integration and seems more 

appealing on the simulated performance and fabrication cost. 

The scalar diffraction theory, including Fourier transform properties of lens and 

the pupil function of the blazed phase grating, is first presented. It is the basic theory for 

the design of TD-OFT. 

Later, a detailed theoretical model of TD-OFT is developed by mathematical 

derivation. In order to verify the results, the reciprocity in TD-OFT is also explored. The 

simulations based on analytical results are investigated to show how the device 

performance, demonstrated by the similarity coefficient, may be affected by the structural 

parameters or the input pulses. It is found that similarity increases as the device aperture 

increases. For the input pulse, under the circumstance of same similarity, the shorter 

temporal pulse duration with larger bandwidth needs smaller aperture size.  



  iv 
 

Finally, a more accurate numerical simulation carried by the Extension of Beam 

propagation method (EX-BPM) is performed to verify the design concept. Two specific 

examples, Gaussian and raised cosine input signals with same pulse duration 10 fs, are 

chosen to study the device performance. The results show that by utilizing the TD-OFT 

with a designed size about 600 μm (in width)5 mm (in length), the similarity between 

the output temporal profile and the Fourier transform profile of the original pulse can be 

achieved above 97%. To make the device size even smaller, we can either reduce the 

focal length of the collimating lens or enlarge the bandwidth of input pulse.  

 

  

 



  v 
 

 

Acknowledgements 
I would like to express my deepest gratitude to my supervisor Dr. Xun Li. This 

thesis would not have been possible without his remarkable help and inspiration. Not only 

does he give excellent guidance, generous support and constant encouragement in my 

academic study, but he also offers invaluable advices and perspectives which are of 

substantial benefit to my whole life.  

I greatly appreciate Dr. Wei-Ping Huang and Dr. Mohamed Bakr for their expert 

teaching and enlightening discussions throughout the important course of my M.Sc 

program. I also would like to acknowledge my teaching assistant supervisor, Dr. Shiva 

Kumar and Dr. Tim Davidson, for their numerous help in my work. 

I am very grateful to my colleagues, Dr. Guirong Zhou, Dr. Yanping Xi, Dr. 

Jianwei Mu, Xiaojun Liang, Kan He, Qingyi Guo, Lanxin Deng, Yu Li and Han Lin for 

their useful discussions in research and various assistances in daily life. I would like to 

thank Ms. Cheryl Gies, Ms. Helen Jachna and Mr. Terry Greelay for their administrative 

and technical support.  

Last but not least, I would like to give special thanks from the bottom of my heart 

to my dearest family. It is their deepest love and lifelong care that encourage me to move 

forward.   

 

 

 



  vi 
 

Contents 
 

Abstract........................................................................................................................ iii 

Acknowledgements ........................................................................................................v 

Contents ........................................................................................................................vi 

List of Figures ............................................................................................................ viii 

List of Tables.................................................................................................................xi 

Chapter 1 Introduction.................................................................................................1 

1.1 Background of the Research............................................................................... 1 

1.2 Reviews of the Conventional TD-OFT ............................................................... 2 

1.3 Motivation of the Research ................................................................................ 4 

1.4 Outline of the Thesis .......................................................................................... 5 

1.5 Contributions of the Thesis ................................................................................ 7 

Chapter 2 Basic Theory for TD-OFT...........................................................................8 

2.1 Introduction ....................................................................................................... 8 

2.2 Fresnel and Fraunhofer Diffraction ....................................................................8 

2.3 Fourier Transforming Properties of Lenses....................................................... 12 

2.3.1 Fourier Transformation Through Lens ................................................ 12 

2.3.2 Object Before the Lens ....................................................................... 15 

2.4 Pupil Function for Blazed Phase Grating .......................................................... 17 

2.5 Summary ......................................................................................................... 18 

Chapter 3 Initial Design of TD-OFT..........................................................................20 

3.1 Introduction ..................................................................................................... 20 

3.2 Planar Waveguide Structure ............................................................................. 20 

3.3 Theoretical Model of TD-OFT ......................................................................... 21 

3.3.1 Theoretical Model............................................................................... 21 

3.3.2 Mathematical Derivation..................................................................... 24 

3.4 Reciprocity in TD-OFT.................................................................................... 31 

3.5 Implementation by Analytical Formulations..................................................... 33 



  vii 
 

3.5.1 Gaussian Pulse.................................................................................... 34 

3.5.2 Square Pulse ....................................................................................... 40 

3.5.3 Square Pulse Train.............................................................................. 43 

3.6 Summary ......................................................................................................... 45 

Chapter 4 Improved Design and Numerical Verification by Extension of BPM 

Simulation ....................................................................................................................46 

4.1 Introduction ..................................................................................................... 46 

4.2 Extension of BPM in Time Domain ................................................................. 47 

4.2.1 Beam Propagation Method.................................................................. 47 

4.2.2 Extension of BPM .............................................................................. 50 

4.3 Design of Waveguide Lens .............................................................................. 51 

4.3.1 Mathematical Derivation..................................................................... 51 

4.3.2 Lens Design by BPM.......................................................................... 54 

4.4 Numerical Verification of TD-OFT.................................................................. 56 

4.4.1 Gaussian Pulse.................................................................................... 57 

4.4.2 Raised Cosine Pulse............................................................................ 64 

4.5 Summary ......................................................................................................... 68 

Chapter 5 Conclusion and Future Work ...................................................................69 

5.1 Conclusion....................................................................................................... 69 

5.2 Suggestions for Future Work............................................................................ 69 

Bibliography ................................................................................................................71 

 



  viii 
 

 

List of Figures 
 

Figure  1.1 TD-OFT configuration utilized EO phase modulator....................................3 

Figure  1.2 TD-OFT configuration utilized LCFG. ........................................................ 4 

Figure  1.3 Temporal telescopic system based on FWM time lens. ................................ 4 

Figure  1.4 Block diagram of the outline of the thesis. ................................................... 6 

Figure  2.1 Coordinate systems for optical-wave propagation. ....................................... 9 

Figure  2.2 Geometry of a half thin lens. ...................................................................... 13 

Figure  2.3 Input plane is placed directly against the lens............................................. 14 

Figure  2.4 Input plane is placed a distance 0d in front of the lens. .............................. 15 

Figure  2.5 Structure of blazed phase grating. .............................................................. 17 

Figure  3.1 Schematic view of waveguide-based structure from both side and top........ 21 

Figure  3.2 Schematic view of TD-OFT system. .......................................................... 23 

Figure  3.3 Block diagram of TD-OFT pulse processing system. ................................. 23 

Figure  3.4 Schematic view of lens imaging system. .................................................... 26 

Figure  3.5 TD-OFT apparatus..................................................................................... 30 

Figure  3.6 Output waveform is launched from the right-hand waveguide to the 

left-hand. ................................................................................................... 32 

Figure  3.7 Gaussian pulse with duration 10  ps. ..................................................... 34 

Figure  3.8 Comparison between the spatial distributions of different grating 

apertures and ideal spectrum profile in the plane of 4x .............................. 36 

Figure  3.9 Comparison between the spatial distributions of different grating 

apertures and ideal temporal waveform in the plane of 5x ......................... 37 

Figure  3.10 For Gaussian pulse with duration  =100fs. (a) Comparison between 

the spatial distribution and ideal temporal waveform in the plane of 4x . 



  ix 
 

(b) Comparison between the spatial distribution and ideal temporal 

waveform in the plane of 5x . .................................................................... 38 

Figure  3.11 Comparison between the spatial distributions of different pulse 

durations and ideal spectrum profile in the plane of 4x . ............................ 39 

Figure  3.12 Comparison between the spatial distributions of different pulse 

durations and ideal temporal waveform in the plane of 5x . ....................... 39 

Figure  3.13 Temporal output fields for different pulse durations with input 

Gaussian pulse. .......................................................................................... 40 

Figure  3.14 For square pulse with duration  =10 ps. a) Input pulse of square 

waveform. b) Its frequency spectrum. c) Spatial distribution in the 

plane of 4x . d) Spatial distribution in the plane of 5x . .............................. 41 

Figure  3.15 Comparison between the spatial distribution and ideal spectrum profile 

in the plane of 4x  with input square pulse. ............................................... 42 

Figure  3.16 Comparison between the spatial distribution and ideal temporal 

waveform in the plane of 5x  with input square pulse................................ 42 

Figure  3.17 Temporal output field for different pulse durations with input square 

pulse. ......................................................................................................... 43 

Figure  3.18 For square pulse train. a) Input pulse train. b) Its frequency spectrum. c) 

Spatial distribution in the plane of 4x . d) Spatial distribution in the 

plane of 5x . .............................................................................................. 44 

Figure  3.19 Comparison between the spatial distribution and ideal spectrum profile 

in the plane of 4x  with input square pulse train. ....................................... 44 

Figure  3.20 Comparison between the spatial distribution and ideal temporal 

waveform in the plane of 5x  with input square pulse train........................ 45 

Figure  4.1 A schematic diagram of a lens structure. .................................................... 52 

Figure  4.2 Field distribution after the first lens. .......................................................... 55 

Figure  4.3 Field intensity and effective phase constant after first lens. ........................ 55 



  x 
 

Figure  4.4 Field distribution for the double lens.......................................................... 56 

Figure  4.5 Schematic view of the device structure. ..................................................... 57 

Figure  4.6 Field distribution for the time to space conversion. .................................... 58 

Figure  4.7 Field distributions at the plane of 4x for the five wavelengths.................... 59 

Figure  4.8 Comparison between the spatial distribution and ideal spectrum profile 

in the plane of 4x  for input Gaussian pulse. ............................................. 60 

Figure  4.9 Comparison between the spatial distribution and ideal temporal 

waveform in the plane of 5x  for input Gaussian pulse. ............................. 60 

Figure  4.10 Temporal output field for input Gaussian pulse. ......................................... 61 

Figure  4.11 Reciprocity in TD-OFT.............................................................................. 62 

Figure  4.12 Comparison between the spatial distribution 5rE and ideal temporal 

waveform in the plane of 5x  for input Gaussian pulse from the output 

waveguide. ................................................................................................ 63 

Figure  4.13 Comparison between the spatial distribution of 5lE  and 5rE for the 

input Gaussian pulse. ................................................................................. 63 

Figure  4.14 Comparison between the spatial distribution and ideal spectrum profile 

in the plane of 4x  for raised cosine pulse. ................................................ 65 

Figure  4.15 Comparison between the spatial distribution and ideal temporal 

waveform in the plane of 5x  for input raised cosine pulse. ....................... 65 

Figure  4.16 Temporal output field for input raised cosine pulse. ................................... 66 

Figure  4.17 Comparison between the spatial distribution 5rE and ideal temporal 

waveform in the plane of 5x  for input raised cosine pulse from the 

output waveguide....................................................................................... 67 

Figure  4.18 Comparison between the spatial distribution of 5lE  and 5rE for the 

input raised cosine pulse. ........................................................................... 67 

 



  xi 
 

 

List of Tables 

 

Table 3.1 Initial design of structure parameters for TD-OFT ....................................... 36 

Table 3.2 The aperture value and corresponding similarity of 4E ............................... 37 

Table 3.3 The aperture value and corresponding similarity of 5E ............................... 38 

Table 4.1 Structural design of waveguide lens............................................................. 54 

Table 4.2 Structural design of thin lens and blazed phase grating ................................ 57 

Table 4.3 The offsets along 4x  direction for the five wavelengths ............................. 59 



 

1 

 

Chapter 1                        

Introduction 
 

1.1 Background of the Research 
Over the past two decades, revolutionary breakthroughs have occurred in the field 

of ultrafast pulse technology. The most common generation source is mode-locked laser, 

which offers femtosecond pulse duration with substantially increased average power. 

Recently, diode pumped mode-locked Yb3+ laser with pulse as short as 71 fs and an 

average power of 1.09 W has been reported [1]. To obtain even shorter pulses, other 

approaches based for example on high order harmonics generation of short optical pulses 

in rare gases are being actively investigated. Recent progress have been made even in the 

attosecond regime [2] .  

Within this context, Time Domain Optical Fourier Transformer (TD-OFT) is of 

significant interest in the ultrafast pulse field. It offers various potential applications 

including but not limited to ultrafast real time measurements [3], pulse compression [4], 

spectro-temporal imaging [5], time-resolved spectroscopy [6], ultrafast optical signal 

processing [7] and realization of OFDM system [8].  

A complete TD-OFT causes the temporal and spectral envelopes of a signal to 

swap such that the temporal profile is converted to the spectrum domain while spectrum 

profile is transferred to the time domain. Such transformations are in close analogy with 
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traditional spatial domain Fourier transforms by a spatial lens, therefore, the TD-OFD can 

be viewed as a “time lens.”  

1.2 Reviews of the Conventional TD-OFT 
T. Jannson theoretically proposed the implementation of time lens based on 

space–time duality of electromagnetic waves in 1983[9]. The duality indicates that the 

pulse spreading in time as it propagates in a dispersive medium is equivalent with the 

paraxial diffraction of beams in space. In that sense, the quadratic time-varying phase 

shift across the temporal envelop of the pulse is imparted to a wide input pulse, which is 

entirely equivalent to the action of a thin spatial lens [10, 11]. Several approaches have 

been proposed to perform this imparting.  

The first demonstration of time lens is utilizing self-phase modulation in an 

optical fiber, with subsequent compression in a dispersive delay line such as diffraction 

grating pair [12]. Cross-phase modulation between the original input signal and an intense 

pump pulse in a nonlinear fiber can lead to impart a quadratic phase to the input wave 

[13]. As a result, the output spectrum is the image of the initial temporal profile. However, 

since chirping by self-phase modulation is a nonlinear optical process which is intensity 

dependent, high input optical power is required in order to add large phase shifts. Besides, 

the quadratic temporal shape of the pump pulse can be maintained only within a portion 

of the pulse duration.  

Another optical time lens utilized electro-optic (EO) phase modulator was 

demonstrated by Kolner and Nazarathy in 1989 [14]. An optical wave was imparted a 
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locally quadratic phase profile when it propagated under the cusp of a sinusoidal drive 

field in the EO crystal, thereby allowing the modulator to act as a time lens as show in 

Figure 1.1. Different from the self-phase modulation which relies on the interaction 

between the pulse and a passive medium, this approach depends on the driving power and 

frequency [15]. However, in this method, the time window has to be narrowed down due 

to the fact that an ideal quadratic phase modulation and low aberrations are obtained only 

within a region of about one-sixth of a modulation period. In addition, since the driving 

voltage is restricted to the maximum voltage tolerable by the modulator, the range of 

phase shift that can be imparted to the input signal is therefore greatly limited [16]. 

 
Figure  1.1  TD-OFT configuration utilized EO phase modulator. 

It has been proven that the space-time duality is also applicable to the reflection of 

pulse from linearly chirped fiber gratings (LCFG) [17]. For this purpose, J. Azaña and M. 

A. Muriel have developed the design of OFT based on linearly chirped fiber gratings 

(LCFG) instead of conventional quadratic phase modulation as shown in Figure 1.2. In 

this scheme, the LCFG can be particularly designed to yield the desired dispersion 

characteristics, which makes the system work as a Fourier Transformer.  
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Figure  1.2  TD-OFT configuration utilized LCFG. 

Optical parametric wave-mixing process can also been applied to realize time lens 

[16, 18]. Such as the sum-frequency or difference-frequency generation with chirped 

pump pulses. And more recently, Cornell University has proposed a time lens based on 

four-wave mixing (FWM) in a silicon nanowaveguide. Figure 1.3 is the temporal 

telescopic system consisting of two FWM time lenses. The time lens can produces more 

than 100  of phase shift to the input signal , which is not readily achievable using other 

approaches such as electro-optic phase modulators [19]. Nevertheless, the amplitude 

noise present on the input pulse will be increased by parametric wave-mixing process.  

 
Figure  1.3  Temporal telescopic system based on FWM time lens. 

1.3 Motivation of the Research 
TD-OFT can be demonstrated by discrete photonic and optoelectronic 

components as presented above. However, a critical bottleneck in such setups is the 
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difficulty in integration, thus hampering widespread implementation. On one hand, the 

discrete setups suffer easily from misalignment due to mechanical and thermal influence 

[20]. On the other hand, the large bandwidths carried by the ultrafast pulses cannot be 

readily full utilized by standard electro-optical means because of the limits in 

digital-to-analog converter technology and high timing jitter. Therefore, a solution to the 

implementation of the TD-OFT in an integrated and compact optical system is highly 

demanded. Aiming at this goal, this thesis is devoted to exploring a novel optical 

integrated TD-OFT. 

The TD-OFT based on planar waveguide circuit is capable of integration with a 

more compact size. It not only meets the high environmental stability requirements but 

also allows miniaturization of optical systems. Moreover, integration of planar waveguide 

TD-OFT on a single chip leads to relatively cost reduction. As a result, the planar 

waveguide TD-OFT has the significant potential in the next ultrafast optical network. 

1.4 Outline of the Thesis   
This thesis contains five chapters as shown in Figure 1.4. They are organized as 

follows . 

Chapter 1 starts with the introduction to the background of ultrafast technology. A 

brief review of various setups for TD-OFT is then presented. Finally, the motivation of 

this thesis is outlined aimed at addressing the challenges in the existing TD-OFT devices.  

In Chapter 2, the Fresnel and Fraunhofer diffraction are firstly presented. Then 

under the paraxial approximation, the mathematic description on diffraction of lens is 
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further derived. After that, we investigate the pupil function of the blazed phase gratings 

which will be used in the following chapter.  

 
 

Figure  1.4  Block diagram of the outline of the thesis. 

Chapter 3 focuses on the initial design of planar TD-OFT. It provides a brief 

description of the planar waveguide structure. Then a detailed theoretic model of 
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TD-OFT is proposed. In order to verify the derivation, the reciprocity in TD-OFT is also 

explored. Analysis of the analytical results is further investigated with several examples. 

Chapter 4 gives the simulation results of the whole device. The numerical tool 

named as Extension of BPM (EX-BPM) is described at the beginning. Then, an improved 

design of waveguide lens is discussed. Next, the performance of the design is evaluated 

with several examples.  

Chapter 5 summarizes the conclusions in this thesis and lists suggestions for 

future work. 

 

1.5 Contributions of the Thesis 
The major contributions of this thesis are summarized as follows: 

1.  The theoretical model for TD-OFT, which is composed of waveguide lenses 

and blazed phase gratings, is proposed. A detailed mathematical derivation based on 

scalar diffraction optics is presented. In order to verify the theoretical analysis, the 

reciprocity in TD-OFT is also studied. 

2.  Three different pulse examples, including the Gaussian pulse, square pulse 

and square pulse train, are implemented by analytical formulations.  

3.  Improved waveguide lens is particularly designed and then the whole device 

is simulated by EX-BPM with two specific pulses, Gaussian and raised cosine pulse. The 

simulation results are also verified by reciprocity theorem using the numerical method.    
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Chapter 2                                                       

Basic Theory for TD-OFT 
 

2.1 Introduction 
In optics, classical electrodynamics and quantum electrodynamics are two 

different approaches to describe light. Since the device in our work is used for its 

macroscopic properties rather than sub-microscopic ones, it deals entirely with the 

classical methods .When the wavelength of an electromagnetic wave is very small, 

approaching zero,  the waves propagate in terms of rays which travel in straight lines. 

This can be described by geometric optics. However, the geometric optics is inadequate 

to depict the observed phenomena in many situations such as diffraction. Diffraction 

occurs when the wave meet obstacles and bend around the edges of objects. This is also 

the foundation of our design concept. 

 In this chapter, we start with the Fresnel and Fraunhofer diffraction[21]. Then 

the mathematic derivations on the diffraction of lens are provided based on scalar wave 

propagation and paraxial approximation. Moreover, the pupil function of the blazed phase 

gratings is investigated.  

2.2 Fresnel and Fraunhofer Diffraction   
When light propagates from the source plane to the observation plane as shown in  
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the  Figure 2-1. In this figure, Z denotes the propagation direction, X can be viewed as 

“free space” direction, while Y  indicates the confined direction where the wave is 

confined by a slab waveguide.  

Y

X

Z

'Y

'X

 
Figure  2.1  Coordinate systems for optical-wave propagation. 

The scalar wave equation is given in the form of [22, 23] 

 2 2 2( , , ) ( ) ( , , ) 0,E x y z k n y E x y z    (2.1) 

where 2 2 2 2 2 2 2/ / /x y z        , 2 /k    is the wave propagation constant with 

 as the free-space wavelength of the wave. With slab waveguide structure along Y , the 

filed can be decomposed as   

 ( , , ) ( ) ( , ).m
m

E x y z y U x z  (2.2) 

Substituting (2.2) into (2.1) yields  

2 2 2
2 2

2 2 2( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) 0.m m m
m m m

U x z y U x z y U x z k n y y
x z y

  
  

   
      (2.3) 

Considering ( )y is the slab waveguide mode, we must have 
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2

2 2 2 2
,2 ( ) ( ) ( ) ( ),m m eff m my k n y y k n y

y
  


 


 (2.4) 

where ,eff mn is the effective index of the m th slab mode. Therefore, (2.3) becomes  

 
2 2

2 2
,2 2 ( , ) ( ) ( , ) ( ) 0.eff m m

m
U x z k n y U x z y

x z


   
       

  (2.5) 

Multiplying the mode itself on both side of (2.5) and integrating over the mode spreading 

area 

 
2 2

2 2
,2 2 ( , ) ( ) ( , ) ( ) ( ) 0.eff m m n

m
U x z k n y U x z y y

x z
 





   
       

   (2.6) 

According to the mode orthogonal property, we obtain the equation as follows 

 
2 2

2 2
,2 2 ( , ) ( ) ( , ) 0.eff mU x z k n y U x z

x z
  

     
 (2.7) 

Assuming single guide mode is confined in the waveguide, let ,eff mn n . ( , )U x z can be 

expanded into spatial plane waves though Fourier Transform 

 2( , ) ( , ) ,xf x
x xU x z U f z e df





    (2.8) 

where xf is the spatial frequency. Substituting (2.8) into (2.7), we obtain 

  22 2
2 ( , ) 2 ( , ) 0.x x xU f z k n f U f z     
   (2.9) 

The solution of Equation (2.9) can be solved as 

 
2

01 ( / ) ( )
0( , ) ( , ) .xjkn f n z z

x xU f z U f z e     (2.10) 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 
 

  11 
 

It shows that the 2D free-space behaves like a phaser. The transfer function 

2
01 ( / ) ( )xjkn f n z ze    is given in the 2D form of Huygens-Sommerfeld spherical wave function. 

Following (2.8) and (2.10), it leads to the form of the field distribution as 

 
  

2
0

2
0 0

1 ( / ) ( ) 2
0

1 ( / ) ( ) /

0 0 0

( , ) ( , )

( , ) ,

x x

x x

jkn f n z z f x
x x

jkn f n z z f n x x

x

U x z U f z e e df

U x z e df dx

 

 


 



        

 







 



 (2.11) 

where 2
0 0 0( , ) ( , ) xf x

xU f z U x z e dx






   is used. By introducing the impulse response of 

spherical wave function, we define 

 
  2

0 01 ( / ) ( ) /

0 0 0( , ) .x xjkn f n z z f n x x
h x x z z e dx

 
       



     (2.12) 

Therefore, the propagating field can be rewritten as  

 0 0 0 0 0( , ) ( , ) ( , ) .U x z U x z h x x z z dx




     (2.13) 

Under the paraxial approximation, (2.12) becomes 

 

  2
0 0

2
0

0
0

1{[1 ( / ) ]( ) / }
2

0 0 0

( )
[( ) ]

2( )

0

( , )

.
( )

x xjkn f n z z f n x x

x xjkn z z
z z

h x x z z e dx

n e
j z z

 





   




 



  





 (2.14) 

Equation (2.13) can then be further simplified and the Fresnel (near-field) diffraction 

formula is obtained 

 
2 2

0
0 0

0 0 0

( )
2( ) 2( )

0 0 0
0

( , ) ( , ) .
( )

x x xjkn z z jkn jkn xz z z z z znU x z e e U x z e dx
j z z

     
    




   (2.15) 
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When 0 0( ) /x z z n   is valid, it leads to the Fraunhofer (far-field) diffraction 

formula which is denoted as  

 
2

0 0
0 0

( )
2( )

0 0 0
0

( , ) ( , ) .
( )

x xjkn z z jkn xz z z znU x z e U x z e dx
j z z

     
   




   (2.16) 

From (2.16), it can be found that when light propagates very far form its source field, the 

optical field ( , )U x z turns out to be the space Fourier transformation of the source field 

0 0( , )U x z . Besides, there is an extra factor which counts in the amplitude decay and phase 

delay in Z  plus defocusing in X direction.  

2.3 Fourier Transforming Properties of Lenses  

2.3.1 Fourier Transformation Through Lens 

According to the analysis in the former section, optical system design will become 

straightforward if the spatial Fourier transformation rule is applicable between the radiant 

place 0z and the irradiant lines z . Unfortunately, equation (2.16) is only valid under the 

far-field assumption, which means that the spatial Fourier transformation relation only 

exists in lengthy optical systems with large propagation distance. However, in practical 

applications, we always miniaturize the systems due to the less cost and better integration. 

Therefore, we have to make the Fourier transformation valid even in the near-field region.  

For this purpose, the lens is introduced. It can impart a phase delay which cancels out the 

extra phase shift in Fresnel diffraction leading to its equivalence to Fraunhofer diffraction. 
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As a result, the space Fourier transformation is also utilizable even in the near-field area 

through a proper designed lens.  

 As an example of a simple case, assuming the lens consists of two symmetric 

circle arcs, whose radiuses are the same value R .The refractive indices inside and 

outside the lens are indicated by Hn and Ln  respectively.  In order to calculate the 

phase delay generated by lens, the thickness function should be obtained. Considering 

half of the lens as shown in Figure 2.2, the thickness can be denoted as 

 2 2
1 1( ) (0) [ ],L x L R R x     (2.17) 

X

Z

R

1( )L x

Hn
Ln

1(0)L

\ 
Figure  2.2  Geometry of a half thin lens. 

 
where 1(0)L  is maximum thickness at the central coordinate. If x R , (2.17) is 

approximated by 

  2 2
1 1 1( ) (0) [1 1 / ] (0) / (2 ).L x L R x R L x R       (2.18) 

Therefore, the total thickness at the coordinate ( )x  is calculated as 
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 2 2
1( ) 2[ (0) / (2 )] (0) / ,L x L x R L x R     (2.19) 

where 1(0) 2 (0)L L  is determined by R and the distance between the center of the two 

arcs. Referring to Figure 2.3, the total phase delay of the lens can be expressed as  

 2( ) exp( (0)) exp( ( ) / ).H H Lx jkn L jk n n x R     (2.20) 

Z

X

Hn

Ln

(0)L

f

Input

 
Figure  2.3  Input plane is placed directly against the lens. 

 
In Figure 2.3, assuming that the field distribution at (0)z L   is 

( , (0))U x L and the aperture of the lens is large enough to be ignored. After traveling 

through the lens, the field at 0z   is written as 

 2

( ,0) ( , (0))exp( ( ))
( , (0))exp( (0))exp( ( ) / ).H H L

U x U x L j x
U x L jkn L jk n n x R

 

   
 (2.21) 

Using the Fresnel diffraction equation (2.15), we obtain 
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2 2
0

0

2
2

0 0

2 2
0 0

[ ]2 (0) 2
0 0

( , ) ( ,0)

( , (0)) .
L H LL L

H

x x xjkn z jkn jkn xz z z

x n n n xjkn z jk x jkn xz jkn L z R z

nU x z e e U x e dx
j z

n e e e U x L e dx
j z





      



        





 





 (2.22) 

If 
2( )

L

H L

nz R f
n n

 


, equation (2.22) will change into a Fourier transform, where f  is 

defined to be the focal length of the lens.  

 

2

0

2

22 (0)
0 0

2 (0)
0

( , ) ( , (0))

{ ( , (0))} .

LL
H

L
H

L
x

x njkn f j xxf jkn L f

xjkn f
f jkn L

n xf
f

nU x f e e U x L e dx
j f

n e e F U x L
j f










    
  



 
 

  



 

 


 (2.23) 

2.3.2 Object Before the Lens 

When the source plane is placed a distance 0d before the lens, as shown in Figure 

2.4, the impulse response of Fresnel diffraction can be written as: 

 

Z

X

Hn

Ln

(0)L

f

0d

Input

 
Figure  2.4  Input plane is placed a distance 0d in front of the lens. 
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2

2( ) .
xjknjknz znh x e e

j z
  (2.24) 

Taking the Fourier transform of (2.24), the transform function is obtained 

 
2

( ) .x
zj fjknz n

xH f e e



  (2.25) 

Let the input field at the plane 0 (0)z d L    be 0 0( , )U x d L  . Its angular spectrum is 

illustrated as. 

 0 0( , (0)) { ( , (0))}.xU f d L F U x d L      (2.26) 

The angular spectrum of field at (0)z L   will be 

 20
0

0

0

( , (0)) ( , (0)) ( )

( , (0)).x

x x x

dj fjknd n
x

U f L U f d L H f

e e U f d L




    

  

 


 (2.27) 

The field distribution at the back focal plane of the lens z f will be proportional to the 

Fourier transform of the field distribution at the left plane of the lens, as shown in (2.23)  

 

2

2
20

0

2

02
0

2 (0)

( )2 (0)
0

( )
[ ( ) (0)] 2

0

( , ) { ( , (0))}

( , (0))

( , (0))

L
H

L
x

LL
LH L

L
x

L
L H

x

xjkn f
f jkn L

n xf
f

x d n xjkn f jf jkn djkn L n fL
x n xf

f

xikn f d
jk n f d n L fL

x f

nU x f e e F U x L
j f

n e e e e U f d L
j f

n e e U f d L
j f














 
 

  



 
  

  




 

 

  

  



 .
Ln x
f



 (2.28) 

If 0d f , one of the exponential  phase factors outside of the integral becomes 1, it can 

be further simplified as  
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 [2 (0)]( , ) ( , (0)) .L H

L
x

jk n f n LL
x n xf

f

nU x f e U f f L
j f 




    (2.29) 

Thus, the Fourier transform without the quadratic phase factor is obtained when 

the input is placed in the front focal plane and observed on the back focal plane.  

2.4 Pupil Function for Blazed Phase Grating  
The purpose of the blazed phase grating is to deflect the incident light through a 

certain angle. A schematic view of the grating is shown in Figure 2.5.  

X

Z

g

T

LnHn

d

D
NT



 
Figure  2.5  Structure of blazed phase grating. 

 
It is composed of N periods of identical triangular wedges with period T , width 

d  and the refractive index Hn . The aperture size is D NT . Assuming a collimated 

plane wave is launched from its left, after passing through the grating, a pure phase delay 

will be introduced. Let’s consider each period, the unit transfer function is given by 

 
( ) exp( ( / 2 ) / )exp( ( / 2 ) / )

exp( ( ) / 2)exp( ( ) / ),
gu H L

H L H L

P x jkn T x d T jkn T x d T
jkd n n jkd n n x T

  

   
 (2.30) 
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where / 2x T . The periodicity of the structure can be denotes as ( ) ( )g gP x T P x  , and 

therefore we can illustrate the pupil function by a Fourier series 

 ( ) exp( 2 ),g m
m

mP x A j x
T






   (2.31) 

where the coefficient mA  is expressed by 

 

/2

/2

/2

/2

1 ( ) exp( 2 )

1 exp( ) exp( ( ) / ) exp( 2 )
2

( )exp( ) [ ],
2

T

m guT

TH L
H LT

H L H L

mA P x j x dx
T T

n n mjk d jkd n n x T j x dx
T T

n n n n djk d Sa m











 


   

 
 



  (2.32) 

where sin( ) /Sa x x  . To take the finite aperture into consideration, the pupil function 

of the grating can be finally written as 

 ( ) exp( 2 ) ( / ),g m
m

mP x A j x G x D
T






   (2.33) 

where the gate function is defined as 

 
1 , / 2

( / ) .
0,

x D
G x D

else
 

 


 (2.34) 

2.5 Summary 
In this chapter, we have reviewed the Fresnel and Fraunhofer diffraction. It is 

based on the fact that any spatial distribution of the complex amplitude of light can be 

considered a superposition of plane waves[23]. Then the Fourier transforming properties 

of lenses have been presented. It shows that the field at the lens aperture and the field at 

the lens focal line forms a Fourier transform pair. As a result, the space Fourier transform 
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rule is applicable even in the near-field region with the help of the lens. Finally, we have 

derived the pupil function of the blazed phase gratings which will be employed in the 

following chapter.     



 

20 

 

Chapter 3                                                         

Initial Design of TD-OFT 
 

3.1 Introduction 
As we discussed previously, the conventional TD-OFT normally requires large 

device size. In addition, it is hard to integrate. Therefore, it is highly demanded to search 

for an alternative TD-OFT that has the feature of integration compatibility but is less 

complicated to fabricate and with less cost. In this thesis, a novel planar waveguide 

TD-OFT by using a combination of waveguide lens and waveguide blazed phase gratings 

is proposed. Comparing with existing TD-OFT, this device has better performance, lower 

layout complexity, and more importantly, capable of integration.   

This chapter starts with a brief description of the planar waveguide structure. 

Then a detail theoretic model of TD-OFT is proposed. Next, the reciprocity of the device 

is investigated. After that, we illustrate the analytical results with several examples and 

further extend the analysis to demonstrate how the device performance may be affected 

by the structural parameters or the input pulses. Last, we conclude with a summary of 

results. 

3.2 Planar Waveguide Structure 
Planar waveguide structure is based on the ideal of transferring 3D system into a 

2D geometry, with the advantage of considerably reduced complexity[24]. The schematic 
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view is addressed in Figure 3.1. The light is always confined by the slab waveguide in the 

cross section ( x - y  plane) while travels along z direction. The effective refractive 

indices are controlled by the difference of the cladding thickness. Viewing from the top 

( x - z  plane), two different areas are shown: the dark area with thicker cladding and the 

rest with normal cladding. The dark areas form mesas on top of the normal slab 

waveguide platform. Therefore, in comparison with the effective refractive index ( Ln ) of 

the rest slab waveguide, the dark areas have higher effective refractive index ( Hn ). The 

difference of their index ( H Ln n ) can be controlled by adjusting the height of the mesa. 

The shape of the mesa determines its function [25].  

 
Figure  3.1  Schematic view of waveguide-based structure from both side and top. 

 

3.3 Theoretical Model of TD-OFT  

3.3.1 Theoretical Model  

The schematic illustration of the TD-OFT together with the coordinate system and 

the distance used is shown in Fig 3.1. The transverse coordinate is labelled by x axis and 

propagation direction of the beam is given by z axis. Since the apparatus is uniform 
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along y direction, only one lateral spatial coordinate is considered. For simplicity, the 

material dispersion is also ignored in this thesis. 

Suppose an ideal ultrafast optical pulse to be processed incident onto the TD-OF 

from the input waveguide. The first lens with focal distance 1f  transfers the incoming 

light to a collimated beam. By passing through a blazed phase grating, placed behind the 

lens, the collimated beam is split up into different frequency components. Each 

component in the beam can be directly focused into the back focal plane by the second 

lens 2L . Namely, each single spatial point is located at the position corresponding to the 

frequency of the incident wave. As a result, the spectrum profile of the ultrafast input 

signal is mapped into the field distribution in spatial domain. Due to the spatial Fourier 

transform given by the third lens 3L , with focal distance 2f  , the spectrum profile is 

converted to a field distribution with the temporal profile. Following the symmetric 

principle, another lens identical with 2L  and a same diffraction grating are placed there 

so that the different components are then exactly reconstructed a parallel output beam. 

Finally, after the last lens, the collimated beam is collected by the output waveguide and 

converted back into the ultrafast time domain. However, the output temporal profile is 

now transferred to the replica of the frequency spectrum of the original ultrafast 

waveform. Thus, the input signal completes its Fourier transform through TD-OFT.  
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Figure  3.2  Schematic view of TD-OFT system.   

The working process of the described setup consists three parts as depicted in 

Figure 3.3: A) mapping the temporal input pulse to spectrum profile in the spatial domain; 

B) transferring spectrum profile to temporal waveform in the space by spatial Fourier 

transform; C) converting the temporal waveform in the spatial plane to the shape of 

spectrum profile in the time domain. Throughout the process, we can obtain the spectrum 

profile of the original input pulse in the time domain. A detailed mathematical description 

of the system will be discussed in the subsequent sections. 

 
Figure  3.3  Block diagram of TD-OFT pulse processing system. 
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3.3.2 Mathematical Derivation  

Assuming an ultrafast optical pulse with complex amplitude, separable in spatial 

and temporal dependences, is launched from the input waveguide. Since the guided mode 

profile in a ridge waveguide is similar to a Dirac impulse function, for simplicity, the 

input pulse approximates to an ideal point source. Therefore, it can be written as   

 1 1 1( , ) ( ) ( ).tE x t x u t  (3.1) 

In the frequency domain we have 

 1 1 1( , ) ( ) ( ),E x t x U   (3.2) 

where  

 2( ) ( ) .t
t

jU u t e dt







   (3.3) 

Here   is the frequency offset from the central frequency 0 , i.e. 0opt    , opt  is 

the optical frequency variable which can be denotes as /opt c  . In our case, the 

spectral bandwidth of the input pulse is sufficiently narrow so that we have 0  . 

As Chapter 2 discussed, if the lens is ideal, the field distribution of the incoming 

beam after the lens is simply the Fourier transform of the pupil function. Note that the 

phase due to the propagation and the scaling factor are neglected here. Then in the plane 

of 2x , the collimated field is given by 

 2 2( , ) 1 ( ).E x U    (3.4) 

After passing through the diffraction grating, the collimated light becomes many 

sub-beams with wavelength dependent phase shifts by the grating. Mathematically, the 
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electrical field is multiplied by a pupil function of the grating (see Chapter 2.4) which is 

repeated here for convenience 

 ( ) exp( 2 ) [ / ],g m
s

mP x A j x rect x D
T






   (3.5) 

where the coefficient mA  is expressed by  

 ( )exp( ) [ ].
2

H L H L
m

n n n n dA jk d Sa m


 
   (3.6) 

Here the grating is made of N  identical triangular wedges together with period T , 

width d , aperture size D NT and the refractive index Hn . Hence, the field 

immediately after the grating is derived as   

3 3 2 3 3

3 3

( , ) ( , ) ( )

( )( ) exp( ) [ ]exp( 2 ) [ / ].
2

g

H L H L

m

E x E x P x

n n n n d mU jk d Sa m j x rect x D
T

 

 






 

 
  

 (3.7) 

According to the theory of lens described in the previous chapter, the second lens 

acts as a spatial Fourier transformer which converts the field at the aperture of the grating 

to its angular spectrum at the focus line. Therefore, the angular spectrum in the focus 

plane can be written as  

4
4

1

4 4 3 3

4

( , ) { ( , )}

( )              ( ) exp( ) [ ] [ ( )].
2

L
x

x n xf
f

H L H L
x

m

E f F E x

n n n n d mDU jk d Sa m Sa D f
T



 












 
  

 (3.8) 

From the relation between the special frequency and the deflected angle shown in Figure 

3.4, it is easy to know that  
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 42 sin
2 /

x

L

f
n
 
 

 , or 4
sin .L

x
nf 


  (3.9) 

As a result, the diffractive angular spectrum can be expressed as  

4
( )( , ) ( ) exp( ) [ ] [ (sin )].

2
H L H L L

m L

n n n n d Dn mE DU jk d Sa m Sa
Tn
   

 





 
    (3.10) 

Moreover, the geometric relation is also obtained 

 4 1tan / .x f   (3.11) 

If 4 1x f , we have following approximation  

 4

1

sin tan .x
f

    (3.12) 

X

4E

Z

1f

4x

2 z zf k 


2 x xf k 


2 /Lk n 




Ln

Hn

d

T

D

 
Figure  3.4  Schematic view of lens imaging system. 

Therefore, the field in terms of the position coordinate is given by 

4
4 4

1

( )( , ) ( ) exp( ) [ ] [ ( )].
2

H L H L L

m

n n n n d n x mE x DU jk d Sa m Sa D
f T

 
 





 
    (3.13) 
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From equation (3.13), the m th order blazing condition for the central wavelength can be 

written as 

 
0

,H Ln nm d



   (3.14) 

where 0  is the central wavelength. Also we are able to derive the approximate 

refocusing position 4mx for the m th order blazing light 

 1
4 .m

L

m fx
n T


  (3.15) 

Following (3.12) and (3.15), we can get 

 .
L L

m mc
Tn Tn



   (3.16) 

It shows that the deflection angle is a function of the wavelength (or frequency). 

And thus the beams of different wavelengths will get focused to a different lateral 

position. In other words, the spatial position depends linearly on the wavelengths, i.e., the 

focus position of central wavelength yields  

 0 1 1
0

( ) .H L

L L

m f n n dfx
n T n T
 

    (3.17) 

Once the grating is met by the blazed condition, here we will use 1m   or 0 / H Ld n n  , 

for central wavelength, any higher order of m always makes the first sinc function in 

equation (3.13) periodically zero. On the other hand, assume the wavelength offset is 

much small than the central wavelength, 0   , then even for other wavelength, the 

sinc function is still close to zero. As a result, the summation can be dropped off. On the 
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other hand,  increases as m  increases. Hence, the approximation in (3.12) is no longer 

valid for large . Therefore, the zero value position of the second sinc function in (3.13) 

will not match with those positions for the first sinc completely. There exists mismatch 

between the periods of the two sinc functions due to the blazed shape of the grating. As a 

result, side lobes will appear for high blazed orders[22]. Further more, under the 

condition LDn


 , equation (3.13) will be further simplified to 

 

1
4 4 4

0

0
1 4 0

( , ) ( ) exp( ) [ ( )]
2

  ( ) ( ),

H L L

L

opt

n n Dn mfE x DU jk d Sa x
f Tn

C U x x


 

 


 



 

 
 (3.18) 

where ( 1,2,.., )i i nC  denotes the constant scaling coefficient. As we mentioned before, the 

modulation frequency is much lower than the carrier frequency, 0  , so we will have 

 0 0
0

0 0

1 1 / .
1 /opt

 
 

    
   

 
 (3.19) 

Substituting (3.19) into (3.18) gives 

 
4 4 1 4 0

0

'
1 4 0

0

( , ) ( ) [ (1 )]

( ) .

E x C U x x

C U x x


  



 


  

 
  

 

 (3.20) 

Here we set the new transverse central axis to be  '
4 4 0x x x   for convenience. 

Performing the integration over frequency of (3.20) obtains the pure spatial 

distribution in the Fourier plane 
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' '
4 4 1 4 0

0

'0
2 4

0

( ) ( ) ( )

( ).

E x C U x x d

C U x
x


  








 

 


 (3.21) 

It is clearly shown that the output spatial profile is proportional to the spectrum of 

the scaled input pulse. In other words, the spectrum profile of the incoming pulse is 

mapped into the spatial replica in the Fourier plane. 

To determine the electrical field in the focus plane of the third lens, a spatial 

Fourier transform is taken 

 
5

0 2

0 5
5 5 4 4 2

0 0 2

( ) {( ( ))} ( ).
L

x

L
n x tf

f

x n xE x F E x C u
f  

    (3.22) 

Therefore, the spectrum profile is converted to temporal waveform in the spatial 

domain. After that, the lens 4L and the second grating 2G  are recombined to form a 

collimated out beam. That is to say after E5, this part of devise performs an inverse 

Fourier transformation to obtain the space to time conversion. However, the output 

radiation now has a new temporal structure which is corresponding to the profile of 

frequency spectrum. 

To account for the remain part of the system, we can use the relation between the 

deflected angle  and its corresponded frequency  to obtain the final results due to the 

symmetry of whole setup. According to (3.16), after passing through 4L , the spatial 

profile will be again decomposed to many sub collimated beams with different deflected 
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angle. With reference to Figure 3.5, the geometric relation as same as equation (3.12) will 

be achieved.  

Therefore, the field in the axis of 6x  can be expressed in terms of   

 0
6 1

0 0 2

( ) ( ).L
t

x nE u f
f

 
 

   (3.23) 

 

nH

X
g

4E

Z

1f

4xnL






5E2E 3E

6E 7E 8E

1E

2f2f

1f5x



0x

 
Figure  3.5  TD-OFT apparatus.  

The second grating is applied in the inverted geometry so that it reconstructs the 

light beam with each frequency component. Substituting the inverse transfer function of 

(3.16) to (3.23) and using equation (3.19) gives the electrical field immediately after the 

grating 

 0
7 2

0

( ) ( ) 1.t
x mE u

T



   (3.24) 

Taking the inverse temporal Fourier transform of (3.24), the output waveform in 

the time domain is given by 

 
2

20 0
8 8 82

0 0

( , ) ( ) ( ) ( ).t
t

x m TE t x u e d U t x
T x m

 
 







   (3.25) 
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Reference to (3.25), it is of interest to note that the output temporal waveform is 

proportional to the spectrum shape ( )U  (
2
0

0

T t
x m


  ) of the input waveform. The whole 

device plays a role as a time domain Fourier transformer  

 

3.4 Reciprocity in TD-OFT 
The reciprocity in wave propagation is a general theorem which has been verified 

theoretically and experimentally [26, 27]. Typically, this refers to the symmetry of 

propagation under the interchange of the source and the observer. As it is proved that in 

the case of lossless waveguide the theorem is satisfied [28, 29], reciprocity is also 

applicable in TD-OFT. 

If the output wave is launched from the right-hand output waveguide to the 

left-hand input waveguide, the wave will completely retrace the incidence path and the 

original input signal can be finally obtained. As a result, the TD-OFT can be formulated 

mathematically in a reversed way through the reciprocity symmetry. For simplicity, only 

the results indicating the propagation from the output to the axis of 5x  are summarized 

here. As sketched in Figure 3.6, '
( 8,7...,5)i iE   is denoted as the electrical field in a specific 

plane. As we derived previously in (3.25), the output waveform is given by 

 
2

' 0
8 8 8

0

( , ) ( ) ( ).
TE x t U t x

x m


  (3.26) 
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'
5E '

6E '
7E '

8E

2 z zf k 


2 x xf k 
 2 /Lk n 



z

1f

5x



 
Figure  3.6  Output waveform is launched from right-hand waveguide to the left-hand. 

A collimated beam is obtained by passing the lens. It can be expressed in the 

frequency domain  

 ' 0
7 7 2

0

( , ) ( ) 1.t
x mE x u

T



   (3.27) 

The diffraction grating is applied via multiplying the transfer function 

 ' '
6 6 7 7 7( , ) ( , ) ( ).gE x E x P x    (3.28) 

Through the spatial Fourier transform, the field immediately after the lens is derived as 

' 0
5 5 52

0

( )( , ) ( )exp( ) [ ] [ ( )].
2

H L H L
x t x

m

x m n n n n d mE f Du jk d Sa m Sa D f
T T



 





 
    (3.29) 

Under the approximations described previously, it will be further simplified in term of 

spatial coordinate 

 ' ' '0 0
5 5 1 52

0 50

( , ) ( ) ( ).t
x mE x C u x

T x
   


   (3.30) 

where '
5 5 50x x x   , 50x  is the focus position of central wavelength. It is easily to 

proved the following relation   
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 0 1
50 0 .

L

m fx x
n T


    (3.31) 

The spatial field distribution, corresponding to the plane of 5x  is given by  

 

' ' ' '0 0
5 5 1 52

0 50

'
' 0 5 0 0
2 2 2 2

0 0 0 0

'
' 5
2

0

( ) ( ) ( )

( ) ( )

( ).

t

t

t

x mE x C u x d
T x

x m mx x m x mC u d
T T T T

mxC u
T

 
  




  

   











 

 

 



  (3.32) 

Using (3.17) to replace m , it becomes 

 
'

' ' ' 0 5
5 5 2

0 0 2

( ) ( ).L
t

x n xE x C u
f 

   (3.33) 

Comparing with equation (3.22), we have 

 '
5 5 5 5( ) ( ).E x E x  (3.34) 

It is clearly shown the field distribution which results from the input pulse 

emerging from the left is identical to the one which is contributed by the output waveform 

launching from the right. Therefore, with reciprocity theorem, the theoretic model of 

TD-OFT is verified. 

 

3.5 Implementation by Analytical Formulations 
As we stated above, the input pulse can be transformed to its spectrum profile in 

time domain as long as the lenses and gratings are properly designed. To prove the initial 

design concept, three different examples are implemented by analytical formulations. 
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3.5.1 Gaussian Pulse   

Consider a Gaussian input pulse centered at 0  as shown in Figure 3.7  

 
2

1 1 1 2( , ) ( ) exp( ),tE x t x


   (3.35) 

with pulse duration 10  ps. The Fourier transform spectrum of the pulse is also 

Gaussian shape  

 2
1 1 1( , ) ( ) exp[ ( ) ],E x x      (3.36) 

where 0opt    .  

 
Figure  3.7  Gaussian pulse with duration 10  ps. 

With equation (3.13), we can derive the resulting spatial distribution in the Fourier 

plane 4x  
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2 4
4 4

1

( )( , ) exexp[ ( ) p( ) [ .] ] [ ( )]
2

H L H L L

m

n n n n d n x mE x D jk d Sa m Sa D
f T


 

  




 
  

   (3.37) 

It is worth mentioning that this equation leads to several important observations. 

1) When the grating is satisfied with the blazed condition, i.e., 

0( ) / 1H Lm n n d      ,  as for central wavelength, any other high order 

of m will leads the first sinc function periodically zero. 

2) The second sinc function will approach the delta function only if the 

argument 
1

LTnN
f

 ( D NT ) is extremely large. Hence, to get better shape 

performance, we need to make it as large as possible. 

3) On the other hand, the spectra resolution of the setup is determined by 

 1 ,
L

mfx
Tn





 (3.38) 

which means the higher resolution requires smaller 
1

LTn
f

. For this reason, we 

should find the optimum 
1

LTn
f

 to meet the trade-off between the waveform 

similarity and the spectra resolution. 

By comparison, the frequency spectrum and the spatial distribution in the plane of  

4x  is displayed in a same coordinate after scaling and normalization, as shown in Figure 

3.8. For the four distributions, each with the central wavelength 0 1.55um  , but with 
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different grating apertures, i.e., 5D mm ,13mm  , 21mm  , 29mm  , respectively. Other 

structure parameters are summarized in Table 2.1.  

Table  3.1  Initial design of structure parameters for TD-OFT. 
Structure parameters value 

Slab effective refractive index Ln  3.2 

Mesa effective refractive index Hn  3.6 

Diffraction grating period T (μm) 3.88 
Diffraction grating width d (μm) 3.88 
Diffraction order m  -1 

Lens focal length 1 2,f f  (μm) 628 

 
Figure  3.8  Comparison between the spatial distributions of different grating apertures 
and ideal spectrum profile in the plane of 4x . 

The figure is clearly shown that when the aperture is small, the side-lobe level is 

high due to the diffraction effect. While the aperture increases, the sinc function will get 

closer to the delta function. As a result, the spatial distribution is approaching its 

corresponding spectrum. In order to describe the similarity of two different profiles and 

evaluate performance of the device , the similarity coefficient is defined as follows 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 

  37 
 

 
1 2

2 2
1 2

( ) ( )
( ) .

( ) ( )

f t f t dt
Simi

f t dt f t dt








 

 


 
 

 (3.39) 

According to (3.39), one obtains the similarity of each distribution as shown in Table 3.2. 

The spectra resolution in the focus plane can be demonstrated as 60nm 75
0.8nm

x



 


 

Table  3.2  The aperture value and corresponding similarity of 4E . 
Aperture 5mm 13mm 21mm 29mm 
Similarity 75.98% 96.65% 99.81% 100% 

Following the spatial Fourier transform, the spatial profile behind the third lens, 

namely 5E , is obtained as illustrated in Figure 3.9 and the corresponding similarity is 

expressed in Table 3.3. It is clearly shown that the similarity also increases with an 

increase of the aperture. 

 
Figure  3.9  Comparison between the spatial distributions of different grating apertures 
and ideal temporal waveform in the plane of 5x . 
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Table  3.3  The aperture value and corresponding similarity of 5E . 
Aperture 5mm 13mm 21mm 29mm 
Similarity 37.77% 76.04% 95.59% 99.79% 

Consider a pulses with shorter pulse width, for example  =100fs. To get the 

similarity 100% at 4x  and 99% at 5x , as shown in Figure 3.10, the apertures is only 

required about 456μm. It is clearly to show that the shorter pulse (larger bandwidth) can 

have smaller aperture size. 

 
(a)                              (b) 

Figure  3.10  For Gaussian pulse with duration  =100fs. (a) Comparison between the 
spatial distribution and ideal temporal waveform in the plane of 4x . (b) Comparison 
between the spatial distribution and ideal temporal waveform in the plane of 5x . 

 
For comparison, let’s choose the input pulse width  =50fs, 100fs, 200fs, 

respectively. With the same structure mentioned above, we can get the amplitude 

distributions of 4E and 5E  for each signal. From Figure 3.11, one can notice if the input 

is a shorter temporal duration optical pulse, then the width of spatial profile in the focus 

plane of 4x , is widen due to the broader spectrum. As a result, as shown in Figure 3.12, in 
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the Fourier plane of 5x , the field distribution ranges spatially over a narrower distance. 

Figure 3.13 shows the final temporal output fields for three pulses. They are compressed 

in time domain and proportional to the corresponding scaled spectrum profile.  

 
Figure  3.11  Comparison between the spatial distributions of different pulse durations 
and ideal spectrum profile in the plane of 4x . 

 
Figure  3.12  Comparison between the spatial distributions of different pulse durations 
and ideal temporal waveform in the plane of 5x . 
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Figure  3.13  Temporal output fields for different pulse durations with input Gaussian 
pulse. 
 

3.5.2 Square Pulse 

As another example, suppose a square pulse centered at 0 1.55um  with 

duration 0 10psT  as shown in Figure 3.14(a).  Its temporal part, ( )tu t , is then 

described as  

 
0

( ) ( ),t
tu t rect

T
   (3.40) 

It’s frequency spectrum, shown in Figure 3.14(b), is given by  

 0 0( ) sin ( ).U T c T   (3.41) 

The structure parameters are based on Table 3.1 with the aperture D =11.4mm. 

Following the same procedure we discussed in the previous section, we can get the spatial 
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distribution in the plane of 4x  and 5x  given by Figure 3.14(c) and Figure 3.14(d) , 

respectively. 

 
Figure  3.14 For square pulse with duration  =10 ps. a) Input pulse of square waveform. 
b) Its frequency spectrum. c) Spatial distribution in the plane of 4x . d) Spatial 
distribution in the plane of 5x . 

To compare with the input frequency spectrum or input temporal waveform, again, 

we show the scaled spatial distribution 4E  or 5E  in the same coordinate. As Figure 3.15 

and Figure 3.16 demonstrate, both of them are agreed with the corresponding input. The 

similarity is calculated as 99.96% for 4E  , 99.78% for 5E . 
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Figure  3.15  Comparison between the spatial distribution and ideal spectrum profile in 
the plane of 4x  with input square pulse. 

 
Figure  3.16  Comparison between the spatial distribution and ideal temporal waveform 
in the plane of 5x  with input square pulse. 
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The final output waveform in the time domain is given by Figure 3.17. 

 
Figure  3.17  Temporal output field for different pulse durations with input square pulse. 
 

3.5.3 Square Pulse Train 

One application of the TD-OFT is in the generation of pulse train or pulse 

sequences. Here we discuss the square input pulse train with duration 12
0 10T  s , see in 

Figure 3.18. The comparison between the input spectrum profile and the spatial 

distribution of 4E , or between the original  temporal waveform and the spatial 

distribution of 5E  , is shown in Figure 3.19 , Figure 3.20 respectively. However, to get 

the similarity as high as 98%, the aperture has to be enlarged to 532 mm. This is based on 

the fact that there are much more details (or high frequency components) including in the 
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spectrum profile of the pulse train compared to the single pulse. Therefore, in this case, 

TD-OFT can work only under the condition of a larger aperture. 

 
Figure  3.18  For square pulse train. a) Input pulse train. b) Its frequency spectrum. c) 
Spatial distribution in the plane of 4x . d) Spatial distribution in the plane of 5x . 

 
Figure  3.19  Comparison between the spatial distribution and ideal spectrum profile in 
the plane of 4x  with input square pulse train. 
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Figure  3.20  Comparison between the spatial distribution and ideal temporal waveform 
in the plane of 5x  with input square pulse train. 
 

3.6  Summary 
In this chapter, we have proposed a new design for planar waveguide TD-OFT by 

combining waveguide lenses and waveguide blazed phase gratings. Three examples have 

been chosen to study how the device performance is affected by the structural parameters 

and the input pulses. In order to evaluate the performance, the similarity coefficient has 

been defined. Namely, larger similarity coefficient is corresponding to better device 

performance. The results show that the similarity increases as the device aperture 

increases. For the input pulse, under the circumstance of same similarity, the shorter 

temporal pulse duration (larger bandwidth) needs smaller aperture size.  
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Chapter 4                                

Improved Design and Numerical Verification by 

Extension of BPM Simulation 
 

4.1 Introduction  
The fundamental design concept was proposed in the previous chapter. However, 

it is based on the assumption that the input is a Dirac function and the lens is ideal. 

Although it provides an ideal pulse shaping response and simplifies the mathematical 

derivation, it is not practical. In real case, the waveguide mode is launched from the input 

port instead of the point source. And, the limited aperture of the lens can introduce 

non-ideal spatial Fourier transform. Also, the discontinuity of the grating’s corners may 

introduce extra diffraction. Taking all these limitations into account, a more precise 

numerical simulation such as Beam Propagation Method (BPM) has to be carried out to 

verify the design. 

This chapter is organized in the following way. First, the Extension of BPM 

(EX-BPM) is described in section 4.2. Then, an improved design of waveguide lens based 

on scalar wave propagation and paraxial approximation is presented in section 4.3. After 

that, the performance of the design is evaluated with several examples, i.e., Gaussian 

pulse and raised cosine pulse. For the sake of verification, the reciprocity theorem is also 

applied in the simulation. In section 4.5, we summarize.    
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4.2 Extension of BPM in Time Domain  

4.2.1 Beam Propagation Method 

Beam propagation method (BPM) based on finite-difference (FD) scheme is the 

most widely spread numerical tool in the study of electromagnetic field propagation in 

optical waveguides and photonic integrated circuits.  

For the sake of simplicity, the two-dimensional case is treated. Let’s start with the 

scalar Helmholtz equation for the electric field transverse component E  [30-32] 

 
2 2

2 2
02 2 ( ) 0,E E k n x E

x z
 

  
 

 (4.1) 

where ( )n x  is the refractive index, 0k  is the wave number in free space and  is the 

wavelength. By assuming the wave travels along z direction without reflection, the field 

can be expressed as the combination of a slowly varying envelope and a fast-oscillating 

phase term 

 0 0( , ) ( , ) ,jk n zE x z U x z e  (4.2) 

where 0n  is the reference refractive index, substituting (4.2) into (4.1), the one way 

wave equation can be written as follows 

 
2 2

2 2 2
0 0 0 02 22 ( ) 0.U U Ujk n k n n U

z z x
  

    
  

 (4.3) 

To derive the equation for the wide-angle BPM, the (4.3) can be reduce to 

 0 0 ( 1 1) ,U jk n X U
z


   


 (4.4) 
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where 
2

2 2 2
0 02 2 2

0 0

1 ( ) .X k n n
k n x

 
    

  

Given the field at the propagation distance z , the solution to (4.4) at z z  is given by 

 0 0( ) exp ( 1 1) ( ).U z z jk n X U z         (4.5) 

Note that 1 X is the square root operator, it should be amended to direct 

numerical solution with rationalization. For this purpose, the efficient multi-step method 

based on Padé approximation is utilized [33, 34]. 

 ,

1 ,

1 1 ,
1

p
i p

i i p

a X
X

b X

  
  (4.6) 

where  

 2
,

2 sin ,
2 1 2 1i p

ia
p p

 
    

 (4.7) 

 2
, cos .

2 1i p
ib
p
 

   
 (4.8) 

The multi-step scheme is obtained by rewriting (4.5) as 

 

,
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
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



 (4.9) 

From which the i th step takes the form 
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 ,
0 0

,

[ / ] exp [ ( 1) / ].
1

i p

i p

a X
U z i z p jk n z U z i z p

b X
 

          
 (4.10) 

The Crank-Nicholson scheme for the exponential function is used, which yields 
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1
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

 (4.11) 

where  

 0 0
, , ,

2o i p i p
jk n zb a 

   (4.12) 

 0 0
, , .

2p i p i p
jk n zb a 

   (4.13) 

Applying the second-order FD formula to (4.11), we can relate the electric field at 

/m z i z p   , i.e., /m i pU  , to the field at ( 1) /m z i z p    ,i.e., ( 1)/m i pU    by the 

following expression 

 / / / ( 1)/ ( 1)/ ( 1)/
0 1 0 0 1 1 1 ,m i p m i p m i p m i p m i p m i p

i i i p i p i p iU QU U U BU U             
         (4.14) 

where  

 
22 2 2 / ( 1)/

2 2 20 0
0 02 ,

2

m i p m i p
i i

o

k n x n nQ x k n


                  
 (4.15) 
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 (4.16) 
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4.2.2 Extension of BPM  

As outlined previously, the conventional BPM is based on the formulations in the 

frequency domain and therefore not directly applicable for the time domain analysis of 

pulse propagation [35-37]. Although the finite-differences time-domain (FDTD) method 

is the powerful technique for simulation of temporally varying waveforms in the 

guided-wave devices, it requires huge computer resources due to the small time step size, 

and more importantly, it is not suitable for optically large structures. To improve the 

efficiency, an extension of beam propagation method (EX-BPM) has been developed [38]. 

This approach based on the linear optical structure can describe the propagation of optical 

fields in the time domain with high precision.  

In a linear optical structure, the propagation of pulse can be linear decomposed 

into different frequencies and each one independently propagates with the well 

established BPM technique. A pulse at the time t  can be indicated as a superposition of 

monochromatic waves. 

 2( , , ) ( , , ) ,j t
tu x z t U x z e d  

 


    (4.17) 

where 2( , , ) ( , , ) j t
tU x z u x z t e d  

 


  , /c   , c  is the speed of light in the free 

space and   is the wavelength. Assume that an input pulse at 0t   is launched from 

0z   into the guiding structure along ẑ direction. Numerically, (4.17) is discredited as  

 2
0( ,0, ) ( ,0, ) ,mj t

m
m

u x t U x e  






   (4.18) 
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where ( ,0, ) ( , , )m mU x U x z    , 1/ T  , T is the time length of window and 

0m m     , 0  is the central carrier frequency. For each frequency component, the 

function  ( ,0, )mU x   is propagated along the guiding structure with the ordinary BPM 

which can be represented as 

  2 2 2( , , ) exp / ( ,0, ),m m mU x z j x k U x      (4.19) 

where the propagation constant is defined by  2 /m mk c . The optical field at the 

desired distance z is obtained when we repeat the operation in (4.19). Considering the 

structure is optically linear, no new frequencies are generated. Therefore the pulse profile 

at the time t  can be reconstructed from the inverse Fourier Transform 

 2( , , ) ( , , ) .mj t
t m

m
u x z t U x z e  






   (4.20) 

 

4.3 Design of Waveguide Lens  

4.3.1 Mathematical Derivation  

In chapter 2, we discussed the conventional lens. Although it is thin, it has a larger 

focal distance. Here, an improved waveguide lens is proposed [25] [22]. The schematic 

diagram with an aperture D is illustrated in Figure 4.1. 
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Figure  4.1  A schematic diagram of a lens structure. 

The refractive indices inside and outside the lens structure are denoted by Ln  and 

Hn , respectively. As shown in the sketch, the lens should be shaped in such a way that 

makes the collimated light illuminating from left to right focused at the distance of f or 

vice versa. According to the ray optics theory, the optical paths of the rays in the 

collimated beam should be all equal 

 2 2
0 0 0( ) [ ( )] .H L Hn f n l x n f l x x     (4.21) 

It can be rewritten in the following form 

 
2 2

0 0
2 2

[ ( ) ] 1,l x a x
a b
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   (4.22) 
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L H
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
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It is shown that this lens should take an elliptical shape. The long and short axis 

equal to a  and b . The solution for (4.22) can be expressed as 

 
2 2 2
0 0 0

0 2 2 2( ) 1 (1 ) ,
2

x x axl x a a a a
b b b

        (4.25) 

where the first order Taylor expansion of the square root is applied under the condition 

that 0x
b

 is much smaller than 1. Since the lens works as a phaser, the pupil function can 

be written as 

 0 0
2 { ( ) [ ( ) ( )]}

2
0( ,0) ( / ) ,L H

Dj n l x n l l x

lP u x Ga x D e



 
  (4.26) 

where 0( ,0)u x  is the given field at the origin 0z  . Substituting (4.25) into (4.26) gives 

 
2
0

0[ ( ) ]
2

0( ,0) ( / ) .
H
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f

lP u x Ga x D e


  (4.27) 

Therefore, according to the Fresnel (near-field) diffraction formula (2.15), the field 

distribution at the focal line of the lens ( z f ) is obtained  
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 (4.28) 

where 0(0) ( / 2)l l x D  . It can be found that the lens plays a role as a spatial Fourier 

transformer. Physically, the lens corrects spherical wave front to plane wave front by 

forcing the rays with smaller angle (to the propagation axis) to experience more delays. 

This correction is only valid with the paraxial assumption under which the spherical wave 
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is firstly approximated by a parabolic wave. After such correction, the Fresnel 

transformation becomes the spatial Fourier transformation without the far-field 

assumption. Also because of such spherical wave to plane wave correction, a point source 

at the focal line will be collimated by the lens at its aperture. 

4.3.2 Lens Design by BPM  

According to the mathematical formulation discussed in the previous section, an 

initial design on the waveguide lens can be obtained. However, in practical case, the input 

is waveguide mode rather than a point source, and more importantly, the formulation is 

only valid under the paraxial approximation. As a result, we have to use a more accurate 

numerical simulation tool to verify and further improve the design. Here, the BPM is 

employed. The wavelength is chosen as 0 =1.55μm. The design data for the lens is 

shown in Table 4.1   

Table  4.1  Structural design of waveguide lens. 
Structure parameters value 

Slab effective refractive index Ln  3.2 

Mesa effective refractive index Hn  3.6 

Input waveguide refractive index wn  3.25 

Input waveguide width (μm) 2 
Long axis of the ellipse a (μm) 316 

Short axis of the ellipse b (μm) 150.5 
Lens focal length f (μm) 628 
Lens aperture D (μm) 301 

The field distribution after the first lens is depicted in Figure 4.2. To show the 

collimation properties of the lens, both the amplitude and effective phase after the first 
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lens along z  direction are recorded as shown in Figure 4.3. The effective phase constant 

is defined as  

 
0

(ln ln )
,eff

j F F
z


 

  (4.29) 

where F is the electrical field obtained by BPM. 

 
Figure  4.2  Field distribution after the first lens. 

 
Figure  4.3  Field intensity and effective phase constant after first lens. 

 
It can be seen that input light beam will expand and finally reach planar-like 

amplitude and phase front as it propagates along z direction.  
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Consider the structure with two waveguide lenses among which one is collimating 

and the other is refocusing the light beam from the input waveguide. For simplicity, we 

selected identical lens design in our example. However, the collimating lens can actually 

be reduced to allow smaller device size. If the lenses are designed ideally, the light which 

is collimated by the first lens and then refocused after the second lens should be 

completely coupled into the output waveguide. Figure 4.4 shows the field distribution for 

the two lens structure. The insertion loss for the structure is 0.1 dB. For this reason, the 

waveguide lens can be employed in the TD-OFT system.  

 
Figure  4.4  Field distribution for the double lens. 

 

4.4 Numerical Verification of TD-OFT  
A schematic view is shown in Figure 4.5. It should be noted that the lens are all 

based on the structure we discussed in the previous section except the third one. Different 

from the ellipse shape of other lenses, the third lens is a conventional thin lens consisting 

of two symmetric circle arcs. The parameters of the thin lens and two blazed gratings are 

presented in Table 4.2.  
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Figure  4.5  Schematic view of the device structure. 

Table  4.2  Structural design of thin lens and blazed phase grating. 
Structure parameters value 

Slab effective refractive index Ln  3.2 

Mesa effective refractive index Hn  3.6 

Diffraction grating period T (μm) 7.7 

Diffraction grating width d (μm) 3.8 
Diffraction order m  -1 
The radius of the arcs in thin lens 189.5 
Thin lens aperture (μm) 351 

Thin lens focal length 2f  (μm) 758 

4.4.1 Gaussian Pulse 

First, let’s consider a Gaussian pulse centered at 0 =1.55 μm with pulse duration 

10  fs. Given the time to space conversion plays a key role in our design, therefore we 

will have emphasis on this part in the remainder of this section. Due to the linear optical 

structure, the pulse can be decomposed into different frequencies. Taking the central 

frequency for example, the field distribution in the plane of 4x  is plotted in Figure 4.6.  
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Figure  4.6  Field distribution for the time to space conversion. 

It can be seen that the collimated light deflects after passing through the grating 

and then refocused to a location along x  by the second lens. The offset is 42.01μm, 

which is a little larger than the analytical one 35.12μm ( 40 0 / Hx f Tm n ). It is due to the 

reason that there is no distance assumed between the grating and the second lens in the 

mathematical derivation. However, in practical numerical simulations, there exists certain 

space between these two components. As a result, the offset is enlarged accordingly.   

Figure 4.7 shows the field distributions of five wavelength inputs with 0.1μm 

apart centered at 1.55μm. 

As we can see, the longer wavelength provides the larger spatial offset in the 

focus plane. The values of the peak locations for the five wavelengths are depicted in 

Table 4.3. It can be found that the separation of 0.1μm is about 2μm which is in good 

agreement with the analytical results 2.27μm ( 0 1 / Hx f nm T  ). 
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Figure  4.7  Field distributions at the plane of 4x for the five wavelengths. 

Table  4.3  The offsets along 4x  direction for the five wavelengths. 
Wavelength(μm) 1.35  1.45  1.55  1.65  1.75  

Offset(μm) -37.8 -40.0 -42.01 -44.01 -46.0 

In order to get the entire spatial distribution, different wavelengths are sampled. 

After the superposition in the frequency domain, the field distribution in the plane of 4x  

is obtained. From Figure 4.8, we can see that the spatial distribution corresponds with the 

scaled spectrum profile. 

Following the spatial Fourier transform, the field distribution at the back plane of 

the third lens is derived as illustrated in Figure 4.9. The spatial distribution nearly shares 

the same profile with the scaled temporal waveform. 
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Figure  4.8  Comparison between the spatial distribution and ideal spectrum profile in the 
plane of 4x  for input Gaussian pulse. 

 
Figure  4.9  Comparison between the spatial distribution and ideal temporal waveform in 
the plane of 5x  for input Gaussian pulse. 
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Figure 4.10 shows the output temporal field agrees very well with the analytical 

waveform, the similarity of these two can be reached to 97.1%. In comparison with the 

original input pulse, the final output pulse is also compressed in time.  

 
Figure  4.10  Temporal output field for input Gaussian pulse. 

According to the reciprocity theorem, the device should also work under the 

interchange of the source and observer. Therefore, we can use this reciprocity symmetry 

to verify our design and simulation. For simplicity, let’s consider the field amplitude of in 

the plane of 5x .The procedures can be illustrated in Figure 4.11.   

A) Suppose an input pulse propagates from the left port to the plane of 4x . It is 

proved that the spatial distribution agrees with the spectrum profile. After passing through 

the middle thin lens, the waveform of 5E  is obtained. It is a spatial Fourier transform 

of 4E  and proportional to the temporal waveform. Let’s demonstrate it as 5lE . B) On the 
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other hand, the ideal output waveform is launched from right port to the plane of 5x . 

Similarly, we can get the field distribution which is denoted as 5rE . In Figure 4.12, it is 

shown that 5rE  is also proportional to its corresponding temporal waveform. C) Then we 

put the 5lE  and 5rE  in the same coordinate, as illustrated in Figure 4.13, they are in a 

good agreement with each other. Based on the reciprocity in TD-OFT which has been 

detailed in chapter 3.4, we can safely conclude that both the theoretic analysis and 

numerical simulation are verified. 
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Figure  4.11  Reciprocity in TD-OFT. 
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Figure  4.12  Comparison between the spatial distribution 5rE and ideal temporal 
waveform in the plane of 5x  for input Gaussian pulse from the output waveguide. 
 

 
Figure  4.13  Comparison between the spatial distribution of 5lE  and 5rE for the input 
Gaussian pulse. 
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4.4.2 Raised Cosine Pulse 

Now we examine the Raised cosine pulse with the same structure. The temporal 

part is denoted as 

 0
2 2

0
2

0

cos
( ) sin ,

41

t
Tth t c

tT
T





 
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with the corresponding spectrum given by   
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(4.31) 

where   is the roll-off factor, here we use 0.95  , 0T =10fs. 

Similarly, the spatial distribution in the plane of 4x  agrees with the spectrum 

profile as shown in Figure 4.14. Moreover, it is also valid when it comes to the field 

distribution in plane of 5x  and the temporal waveform as shown in Figure 4.15. 
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Figure  4.14  Comparison between the spatial distribution and ideal spectrum profile in 
the plane of 4x  for raised cosine pulse. 

 
Figure  4.15  Comparison between the spatial distribution and ideal temporal waveform 
in the plane of 5x  for input raised cosine pulse. 
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From Figure 4.16, it is clearly found that the real output temporal field is in a 

good agreement with our analytical result, the similarity is calculated as 98.7% . In other 

words, it is proportional to the Fourier transform of the input temporal pulse. Also, we 

can see the output filed is stretched in time compared with the original input pulse. 

 
Figure  4.16  Temporal output field for input raised cosine pulse. 

 
To further verify our results, again, reciprocity theorem is employed. If we 

illuminate the device from the right hand side with theoretic output field, then in the 

plane of 5x , the spatial distribution 5rE  is given by Figure 4.17. For the sake of 

comparison, it is presented together with 5lE  which denotes the field amplitude 

obtained from original input pulse at the left hand side. In Figure 4.18, we can find that 

5rE  is in a good agreement with 5lE . Therefore, with the help of the reciprocity in 

TD-OFT, the design concept and the simulation results are verified.    
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Figure  4.17  Comparison between the spatial distribution 5rE and ideal temporal 
waveform in the plane of 5x  for input raised cosine pulse from the output waveguide. 
 

 
Figure  4.18  Comparison between the spatial distribution of 5lE  and 5rE  for the input 
raised cosine pulse. 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 
 

  68 
 

4.5 Summary 
In this chapter, we have numerically simulated the novel design for planar 

integrated TD-OFT by combining carefully designed waveguide lenses and blazed phase 

gratings. Two input examples have been chosen to study the device performance and the 

similarity can be achieved 97.1% ，98.7% respectively with the structure. In addition, the 

reciprocity theorem is also applied to verify both the theoretic results and numerical 

simulation. The design presented in this chapter has shown that the new planar waveguide 

TD-OFT has the potential of reducing the device size and fabrication cost. 
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Chapter 5                                             

Conclusion and Future Work 
 

5.1 Conclusion 
The objective of this thesis is to design, modeling and simulate a novel planar 

waveguide TD-OFT. This device occupies a size about 600μm (in width)5mm (in length) 

for an ultrafast pulse around 10 fs. We find the similarity between the output temporal 

profile and the Fourier transform profile of the original pulse can be achieved above 97%. 

It is possible to make the device size even smaller either by reducing the focal length of 

the collimating lens or enlarging the bandwidth of input pulse. 

Compared with currently proposed TD-OFT made by discrete photonic and 

optoelectronic components, this design can be integrated with a more compact size and 

potentially reduce the cost. As a result, the planar waveguide TD-OFT has great potential 

in the next ultrafast optical network. 

5.2 Suggestions for Future Work 
Although the advantages of our designed TD-OFT have been demonstrated, there 

still remain some topics worth further studying. 

1. Space-time coupling. In the previous theoretical treatment, for the initial input 

pulse, it is assumed that the space and time field components can be separated. However, 
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this assumption is not accurate enough to be used in femtosecond region. It is due to the 

fact that the couplings among the beam parameters in space and time will emerge on 

propagation of the pulse [39-41]. Accordingly, the effects of the coupling between the 

spatial and temporal properties of the pulse upon the propagation need to be further 

investigated. 

2. Time- domain BPM. In this thesis, the extension BPM is applied to simulate the 

device. However, it is still based on the conventional BPM in frequency domain and 

therefore not directly applicable for simulation of the ultrafast pulse propagation in time 

domain. Moreover, neither three-dimensional effects nor the edge reflections are 

considered in the simulation. To overcome the limitations, a more straightforward and 

accurate time-domain BPM for modeling the optical waveguide devices is demanded in 

future work.  

 

 

 

 

 

 

 

 

 



 

71 

Bibliography 
 

[1] M. Tokurakawa, et al., "Ultrashort pulse generation from diode pumped 

mode-locked Yb3+:sesquioxide single crystal lasers," Opt. Express, vol. 19, pp. 

2904-2909, 2011. 

[2] C. Bourassin-Bouchet, et al., "Control of the attosecond synchronization of XUV 

radiation with phase-optimized mirrors," Opt. Express, vol. 19, pp. 3809-3817, 

2011. 

[3] B. Jalali, et al., "Silicon photonics: Silicon's time lens," Nat Photon, vol. 3, pp. 

8-10, 2009. 

[4] J. Giordmaine, et al., "Compression of optical pulses," Quantum Electronics, 

IEEE Journal of, vol. 4, pp. 252-255, 1968. 

[5] A. M. Weiner, "Ultrafast optical pulse shaping: A tutorial review," Optics 

Communications, vol. 284, pp. 3669-3692, 2011. 

[6] D. R. Solli, et al., "Amplified wavelength-time transformation for real-time 

spectroscopy," Nat Photon, vol. 2, pp. 48-51, 2008. 

[7] M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort waveform 

generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B, vol. 

12, pp. 1343-1362, 1995. 

[8] Y. Dong and S. Kumar, "Realization of optical OFDM using time lenses and its 

comparison with conventional OFDM for fiber-optic Systems," in Optical 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 
 

  72 
 

Communication, 2009. ECOC '09. 35th European Conference on, 2009, pp. 1-2. 

[9] T. Jannson, "Real-time Fourier transformation in dispersive optical fibers," Opt. 

Lett., vol. 8, pp. 232-234, 1983. 

[10] A. W. Lohmann and D. Mendlovic, "Temporal filtering with time lenses," Appl. 

Opt., vol. 31, pp. 6212-6219, 1992. 

[11] B. H. Kolner, "Space-time duality and the theory of temporal imaging," Quantum 

Electronics, IEEE Journal of, vol. 30, pp. 1951-1963, 1994. 

[12] D. Grischkowsky and A. C. Balant, "Optical pulse compression based on 

enhanced frequency chirping," Applied Physics Letters, vol. 41, pp. 1-3, 1982. 

[13] L. K. Mouradian, et al., "Spectro-temporal imaging of femtosecond events," 

Quantum Electronics, IEEE Journal of, vol. 36, pp. 795-801, 2000. 

[14] B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett., 

vol. 14, pp. 630-632, 1989. 

[15] B. H. Kolner, "Active pulse compression using an integrated electro-optic phase 

modulator," Applied Physics Letters, vol. 52, pp. 1122-1124, 1988. 

[16] C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging. I. 

System configurations," Quantum Electronics, IEEE Journal of, vol. 36, pp. 

430-437, 2000. 

[17] M. A. Muriel, et al., "Real-time Fourier transformer based on fiber gratings," Opt. 

Lett., vol. 24, pp. 1-3, 1999. 

[18] R. Salem, et al., "Optical time lens based on four-wave mixing on a silicon chip," 

Opt. Lett., vol. 33, pp. 1047-1049, 2008. 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 
 

  73 
 

[19] M. A. Foster, et al., "Ultrafast waveform compression using a time-domain 

telescope," Nat Photon, vol. 3, pp. 581-585, 2009. 

[20] I. P. Kaminow, "Optical Integrated Circuits: A Personal Perspective," Lightwave 

Technology, Journal of, vol. 26, pp. 994-1004, 2008. 

[21] J. W.Goodman, Introduction to Fourier Optics, 2nd ed. New York: McGraw-Hill 

Science, 1996. 

[22] G. Zhou, "Design, modeling and simulation of planar  waveguide 

demultiplexers," Ph.D., McMaster University, Canada, 2007. 

[23] E. W. Max Born, Principles of optics, 7 ed. Cambridge: Cambridge University 

Press, 1999. 

[24] M. Gruber, "Multichip Module with Planar-Integrated Free-Space Optical 

Vector-Matrix-Type Interconnects," Appl. Opt., vol. 43, pp. 463-470, 2004. 

[25] G.-R. Z. Xun Li, Ning-Ning Feng, Weiping Huang, "A novel planar waveguide 

wavelength demultiplexer design for integrated optical triplexer transceiver," 

Photonics Technology Letters, vol. 17, pp. 1214-1216, June 2005. 

[26] D. F. Williams and R. B. Marks, "Reciprocity relations in waveguide junctions," 

Microwave Theory and Techniques, IEEE Transactions on, vol. 41, pp. 

1105-1110, 1993. 

[27] G. Shu and T. T. Charalampopoulos, "Reciprocity Theorem for the Calculation of 

Average Scattering Properties of Agglomerated Particles," Appl. Opt., vol. 39, pp. 

5827-5833, 2000. 

[28] D. Pissoort and F. Olyslager, "Study of eigenmodes in periodic waveguides using 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 
 

  74 
 

the Lorentz reciprocity theorem," Microwave Theory and Techniques, IEEE 

Transactions on, vol. 52, pp. 542-553, 2004. 

[29] C. Shun-Lien, "A coupled mode formulation by reciprocity and a variational 

principle," Lightwave Technology, Journal of, vol. 5, pp. 5-15, 1987. 

[30] Y. Chung and N. Dagli, "An assessment of finite difference beam propagation 

method," Quantum Electronics, IEEE Journal of, vol. 26, pp. 1335-1339, 1990. 

[31] F. Wijnands, et al., "Modal fields calculation using the finite difference beam 

propagation method," Lightwave Technology, Journal of, vol. 12, pp. 2066-2072, 

1994. 

[32] W. P. Huang, et al., "The perfectly matched layer (PML) boundary condition for 

the beam propagation method," Photonics Technology Letters, IEEE, vol. 8, pp. 

649-651, 1996. 

[33] G. R. Hadley, "Wide-angle beam propagation using Padé approximant operators," 

Opt. Lett., vol. 17, pp. 1426-1428, 1992. 

[34] G. R. Hadley, "Multistep method for wide-angle beam propagation," Opt. Lett., 

vol. 17, pp. 1743-1745, 1992. 

[35] F. Ning-Ning and H. Wei-Ping, "Time-domain reflective beam propagation 

method," Quantum Electronics, IEEE Journal of, vol. 40, pp. 778-783, 2004. 

[36] H. M. Masoudi, "A Stable Time-Domain Beam Propagation Method for Modeling 

Ultrashort Optical Pulses," Photonics Technology Letters, IEEE, vol. 19, pp. 

786-788, 2007. 

[37] M. Koshiba, et al., "Time-domain beam propagation method and its application to 



M.A.Sc. Thesis - Rui Tang                            Electrical & Computer Engineering 
 

  75 
 

photonic crystal circuits," Lightwave Technology, Journal of, vol. 18, pp. 102-110, 

2000. 

[38] L. Gomelsky and J. M. Liu, "Extension of beam propagation method to 

time-dependent optical waveforms," Photonics Technology Letters, IEEE, vol. 6, 

pp. 546-548, 1994. 

[39] W. Zhongyang, et al., "Space-time profiles of an ultrashort pulsed Gaussian 

beam," Quantum Electronics, IEEE Journal of, vol. 33, pp. 566-573, 1997. 

[40] F. Frei, et al., "Space-time coupling in femtosecond pulse shaping and its effects 

on coherent control," Journal of Chemical Physics, vol. 130, p. 034302, 2009. 

[41] B. J. Sussman, et al., "Focusing of light following a 4-f pulse shaper: 

Considerations for quantum control," Physical Review A, vol. 77, p. 043416, 

2008. 


