Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11117
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKnights, Andrewen_US
dc.contributor.advisorJessop, Paulen_US
dc.contributor.advisorLapierre, Rayen_US
dc.contributor.authorLogan, Dylanen_US
dc.date.accessioned2014-06-18T16:53:36Z-
dc.date.available2014-06-18T16:53:36Z-
dc.date.created2011-09-06en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6110en_US
dc.identifier.other7138en_US
dc.identifier.other2220139en_US
dc.identifier.urihttp://hdl.handle.net/11375/11117-
dc.description.abstract<p>The continuous reduction of feature size in silicon-based electronic integrated circuits (ICs) is accompanied by devastating propagation delay time and power consumption that have become known as the “Interconnect Bottleneck”. Optical interconnection is a proposed solution that is poised to revolutionize the data transmission both within and between ICs. By forming the optical transmission and functional elements from silicon, they can be monolithically incorporated with standard ICs using the established CMOS (Complementary Metal Oxide Semiconductor) infrastructure with minimal incremental cost. A key required functional element is the photodetector, which provides optical-toelectrical conversion of signals. In this thesis, a method of achieving such conversion is explored, which uses the optical absorption at 1550 nm wavelengths provided by lattice defects. The physics governing defect-enhanced silicon waveguide photodiode operation is described, and a device model is used to verify the posited detection process and propose design improvements. The model was used to design a novel photodetector structure using a waveguide formed by the LOCOS (LOCal Oxidation of Silicon) process with a poly-silicon self-aligned contact. The fabricated device exhibited a responsivity of 47 mA/W, providing an improvement over previous devices of similar dimensions, although were ultimately limited by the quality of the poly-silicon/silicon interface. A sub-micron waveguide photodiode fabrication process using electron-beam lithography was developed, which produced photodiodes with responsivities of 490 mA/W. This process was used to integrate photodiodes onto micro-ring resonators, which exhibit resonant enhanced photocurrent. The physics of this enhancement were explored, and found to produce a 50 μm long resonant photodiode of responsivity equal to that of a 3 mm long non-resonant photodiode. Lastly, the integration of such sub-micron photodiodes as functioning power monitors throughout photonic circuits was demonstrated as a means to characterize and tune micro-rings during operation.</p>en_US
dc.subjectsilicon photonicsen_US
dc.subjectphotodiodesen_US
dc.subjectsemiconductor defectsen_US
dc.subjectoptoelectronicsen_US
dc.subjectring resonatorsen_US
dc.subjectElectronic Devices and Semiconductor Manufacturingen_US
dc.subjectElectronic Devices and Semiconductor Manufacturingen_US
dc.titleDefect-enhanced Silicon Photodiodes for Photonic Integrated Circuitsen_US
dc.typethesisen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
12.89 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue