Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11114
Title: Optical Modulation by Controlling the Charge State of Deep Impurity Levels
Authors: Huante-Ceron, Edgar
Advisor: Knights, Andrew
Jessop, Paul
Xu, Chang-Qing
Department: Engineering Physics
Keywords: Optical;Waveguide;Modulator;Silicon;Indium;Thallium;Electrical and Electronics;Electromagnetics and photonics;Power and Energy;Electrical and Electronics
Publication Date: Oct-2011
Abstract: <p>Measurements of thallium and indium doped Silicon-On-Insulator rib waveguidesshow optical absorption at a wavelength of 1550nm, dependent on the charge stateof the associated deep-level. Therefore, it is possible to use this effect to modulatewaveguide transmission by means of local depletion and/or injection of free-carriersto change deep-level occupancy. A one-dimensional model based on the generationand recombination process described by the modified Shockley-Read-Hall (SRH)mechanism was developed using MATLABc programming language in order to computethe optical absorption of a 1550nm wavelength as a function of the density ofneutrally-charged thallium or indium centers. This numerical model is in reasonableagreement with the experimental data for samples co-doped with low and mediumphosphorus concentrations. The values of optical absorption cross-section calculatedfor thallium are 2.9×10−17 ± 0.25cm2 and 3.2×10−17 ± 0.12cm2 for ion implantationdoses of 7.4×10−13cm−2 and 1.2×10−14cm−2, respectively. Also described is the thedesign, fabrication and characterization of an optical modulator using a four-terminalp+pnn+ diode on an indium-doped Silicon-On-Insulator rib waveguide. Modulationby controlling the charge state of deep impurity levels in silicon was thus demonstrated.Modulation bandwidth in the 2-10MHz regime was measured and the depthof modulation is approximately 0.48dB/V in forward bias and 0.25dB/V in reversebias. This is the first report of the implementation of an optical silicon-waveguidemodulator based on a periodically interleaved pn-junction configuration. In addition,the influence of indium, as a dopant in silicon (utilizing the Impurity PhotovoltaicEffect), as a means to increase the efficiency of a thin film silicon solar cell wasinvestigated using the same samples. Under certain doping conditions and geometricalconfigurations, a cell efficiency greater than 24% was measured —a somewhatremarkable result for these silicon thin films of 2.5μm</p>
URI: http://hdl.handle.net/11375/11114
Identifier: opendissertations/6108
7136
2219510
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.91 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue