Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11103
Title: SIMULATOR INDEPENDENT EXACT ADJOINT SENSITIVITY ANALYSIS OF SELF-ADJOINT MICROWAVE STRUCTURES
Authors: Dadash, Mohammad Sadegh
Advisor: Nikolova, Natalia K.
Bandler, John W.
Mohamed H. Bakr, Ali Emadi
Department: Electrical and Computer Engineering
Keywords: sensitivity analysis;frequency-domain analysis;computer aided design (CAD);response Jacobian;Electromagnetics and photonics;Electromagnetics and photonics
Publication Date: Oct-2011
Abstract: <p>This thesis proposes a new analytical self-adjoint sensitivity analysis to calculate the Jacobian of the <em>S</em>-parameters for metallic shape parameters. This method is independent of the full-wave numerical analysis and the respective system matrix. The theory works for both volumetric and infinitesimally thin metallic shapes. It exploits the computational efficiency of the self-adjoint sensitivity analysis (SASA) approach where only one EM simulation suffices to obtain both the responses and their gradients in the designable parameter space.</p> <p>There are three major advantages to this development: (1) the Jacobian computation for metallic structures is completely analytical and there is no approximation involved in the sensitivity analysis of shape parameters; (2) the implementation is straightforward and in the form of a post-processing algorithm operating on the exported field solutions on the surface or around the edge of the metallic structure; and (3) it provides the possibility for exact sensitivity analysis with all electromagnetic high-frequency simulators whose system matrices are not available to export or are not differentiable with respect to shape parameters, e.g., simulators based on the FDTD method and the MoM.</p> <p>The method was verified in a number of examples using a commercial finite-element solver. The agreement between the results calculated with the proposed method and the reference self-adjoint sensitivity curves provided with the simulator are very promising.</p> <p>Suggestions for future work are provided.</p>
URI: http://hdl.handle.net/11375/11103
Identifier: opendissertations/6098
7126
2208106
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.43 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue