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ABSTRACT 
 

This thesis proposes a new analytical self-adjoint sensitivity analysis to 

calculate the Jacobian of the S-parameters for metallic shape parameters. This 

method is independent of the full-wave numerical analysis and the respective 

system matrix. The theory works for both volumetric and infinitesimally thin 

metallic shapes. It exploits the computational efficiency of the self-adjoint 

sensitivity analysis (SASA) approach where only one EM simulation suffices to 

obtain both the responses and their gradients in the designable parameter space. 

There are three major advantages to this development: (1) the Jacobian 

computation for metallic structures is completely analytical and there is no 

approximation involved in the sensitivity analysis of shape parameters; (2) the 

implementation is straightforward and in the form of a post-processing algorithm 

operating on the exported field solutions on the surface or around the edge of the 

metallic structure; and (3) it provides the possibility for exact sensitivity analysis 

with all electromagnetic high-frequency simulators whose system matrices are not 

available to export or are not differentiable with respect to shape parameters, e.g., 

simulators based on the FDTD method and the MoM. 
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The method was verified in a number of examples using a commercial 

finite-element solver. The agreement between the results calculated with the 

proposed method and the reference self-adjoint sensitivity curves provided with 

the simulator are very promising. 

Suggestions for future work are provided. 
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Chapter 1 

INTRODUCTION 
 

It was only after the advent of the first generation of computers in 1950s 

that computer-aided design (CAD) and analysis became a major branch of 

research in the area of engineering, microwave and millimetre-wave circuits and 

antennas. The modeling of radio-frequency (RF) and microwave structures started 

with the approximate representations of the complex electromagnetic (EM) 

environment with equivalent-circuit lumped elements and transmission lines. This 

method provides physical insight and high computational speed. It is still one of 

the major approaches used by the EM computational community. Thus, the first 

advances in the automated analysis and design of high-frequency structures were 

based on equivalent-circuit models. 

As the power of the computing resources increased, computational 

electromagnetics emerged and various numerical methods were introduced for 

full-wave EM analysis. They calculate the complete field solution in the volume 

of the structure with superior accuracy compared to the circuit-based 
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representations as no approximations of the Maxwell equations are used. The 

main drawback of the full-wave EM analysis methods over the circuit modeling is 

the need for much greater computational resources, which often makes them 

prohibitively slow. Therefore, the integration of full-wave EM simulations into 

optimization precedures, which is usually referred to as simulation-based 

optimization, remains challenging. 

Here, we are focusing on different approaches to design sensitivity 

analysis (DSA). The purpose of DSA is to calculate the gradients of the system 

responses in the design-parameter space. This information is widely used in 

engineering problems such as optimization, modeling, tolerance and yield 

analysis. For example, the response gradients are of particular importance in 

gradient-based optimization, which is a powerful optimization methodology 

featuring fast convergence. 

In general, there are two major techniques to evaluate the system response 

sensitivities: (a) response level approximations using, for example, finite 

differences (FD) or response surface approximations, and (b) adjoint-based 

methods. The system response could be the given by the state variables such as 

voltage or current of a circuit or the field or current-density distribution in a high-

frequency structure. These are known as distributed parameters. The responses 

can also be defined in terms of network parameters, e.g., S-parameters. 

While the finite-difference method at the response level is easy to 

implement, it requires at least N+1 full-wave analyses per design iteration, where 



M.A.Sc. Thesis––M. Sadegh Dadash          Chapter1           McMaster University––E&CE 

3 
 

N is the number of designable parameters. The simulator is invoked repeatedly for 

the perturbed values of the designable parameters. This significant computational 

toll motivates research for smarter DSA approaches. Furthermore, there is no 

robust way to setting the values of the perturbations of the designable parameters. 

Thus, FD gradient approximations are very susceptible to the numerical errors in 

the simulation results since the response function in the EM problem may exhibit 

highly nonlinear behaviour of the design-parameter space. 

On the other hand, the adjoint-based methods are known to be the most 

efficient methods for sensitivity analysis, especially for problems of high 

complexity where the number of design parameters is large [1]-[3]. The  

adjoint-variable method yields the responses and their sensitivities with respect to 

all designable parameters through two system analyses: that of the original 

structure or circuit and that of the adjoint (auxiliary) structure or circuit which is 

built through some straightforward laws. The two system analyses are sufficient 

regardless of the number of designable parameters. 

The first methodologies in the adjoint-based DSA of microwave structures 

have been formulated by Director and Rohrer [4], [5]. These are referred to as 

adjoint-network methods, which are based on Tellegen’s theory and circuit 

concepts [6], [7]. An adjoint network is constructed and solved to calculate the 

adjoint voltages and currents, which then are substituted in the sensitivity 

expression. Mathematically, it is shown that the original problem can be related to 

the adjoint problem by transposing its system matrix [8], [9]. Hence, the analysis 
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of the adjoint problem can be accelerated through some mathematical operations 

on the original system matrix. 

The adjoint network approach can be used for the sensitivity analysis of 

linear circuits and nonlinear time-domain circuits. However, it is not suitable for 

the sensitivity analysis of nonlinear circuits operating in the steady-state periodic 

or almost periodic conditions, since the analysis must be carried out until the 

transient response vanishes. Bandler et al. proposed a method to calculate the 

exact adjoint sensitivity information of linear and nonlinear circuits in the 

frequency domain [10]. This method is an extension to the harmonic balance 

(HB) method which is used to analyse the circuit in the frequency domain and 

only needs to solve a single adjoint system regardless of the number of 

parameters. 

For certain classes of networks, it is inconvenient or even impossible to 

work with currents and voltages. For example, in the microwave region, a wave 

description of the network is preferable. In these cases, the theory of adjoint 

network analysis could be extended to calculate the sensitivity of network 

parameters directly in terms of wave variables [11]. 

The direct differentiation method (DDM) is another method, which can be 

applied to problems cast in the form of a system of linear or nonlinear equations 

[3], [12]. In the case of M state variables, this method permits the determination 

of the sensitivity of all M elements of the state-variable vector with respect to a 

single design parameter through M back-substitutions of the LU decomposition of 
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the system matrix. Thus, for N designable parameters, N M×  back-substitutions 

are needed. Some implementation of this method is given in [36] and [37]. 

With further matrix manipulations, the DDM leads to an adjoint-based 

analysis approach, which is known in control theory, as the adjoint-variable 

method (AVM) [2], [3], or transpose-matrix method [12]. The AVM deals with 

the sensitivity of the response function as opposed to the DDM which calculates 

the sensitivity of the state-variable vector. Hence, it needs N back-substitutions of 

the LU decomposition of the system matrix [13] and it is M times faster than the 

DDM. Since in optimization problems we are mostly interested in the calculation 

of the sensitivity of the response function rather than the state variables, the AVM 

is the more computationally efficient alternative. 

Both the DDM and the AVM need the derivatives of the system matrix 

with respect to the design parameters, which in the case of a non-analytical 

system matrix are often obtained through FD approximations. The latter need at 

least N system matrix refills. This overhead requires less time and memory than 

the N complete simulations required by a response-level FD response-gradient 

approximation. It is shown that the FD approximation at the level of the system 

matrix leads to better accuracy of the response derivative estimates than the FDs 

at the response level [13]. This is due to the fact that the dependence of the 

elements of the system matrix on the design parameters is closer to being linear 

than that of the final response function. 
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The theory of adjoint-sensitivity analysis can be extended to the full-wave 

EM analysis of high-frequency structures. As it was mentioned, the AVM could 

be applied to any linear or nonlinear system of equations, thus, it is also 

applicable to the system of equations arising in full-wave analysis. A variety of 

feasible AVM approaches to field-based EM analyses have been proposed, both 

in the time domain (the transmission-line method, TLM [14], and the finite-

difference time-domain method, FDTD [15]) and in the frequency domain (the 

frequency-domain TLM [16], [17], finite-element-method (FEM), and the method 

of moments, MoM [18]). 

The major difficulty here is the availability of the derivative of the system 

matrix with respect to the design parameters. These derivatives may be available 

analytically in circuit-based models but for most EM solvers, the analytical 

derivative of the system matrix with respect to the design parameters does not 

exist. This is because when the design parameter describes variations in the shape 

of an object, the system matrix elements depend on the solver's discretization 

mesh, the expansion and weighting functions, which in turn may be very 

complicated functions of the shape parameters. So, the finite-difference 

approximation of the system-matrix derivative is often used in the implementation 

of the AVM methods. Possible venues for this line of research could be the 

application of other computationally more efficient gradient approximation 

techniques to the estimation of the derivatives of the system matrix [19]. 
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Similar to the adjoint network equivalent model, in field-based adjoint 

methods, a quasi-electromagnetic problem is created which constitutes the adjoint 

problem. The excitation sources of the adjoint problem are defined based on the 

differentiation of the volumetric response functions with respect to the field state 

variables. Excitations through the boundary conditions are also defined via 

differentiation of the surface response functions with respect to the field variables. 

The solution of the adjoint problem is referred to as the adjoint electric or 

magnetic field. 

Since the adjoint simulation has response-dependent excitation, all 

traditional AVM approaches require modifications of the EM simulators to solve 

the adjoint problem. This is not feasible with most of the commercial CAD 

packages which prevents versatile applications. In 2000, Akel and Webb, for the 

first time, pointed out that, in the case of the FEM with tetrahedral edge elements, 

the sensitivities of the S-parameters can be derived directly from the field 

solutions needed to obtain the full scattering matrix, without the need for any 

adjoint simulation [20], [21]. 

FEM-based solvers also offer another advantage over other simulators. 

The elements of their system matrix are analytical functions of the mesh-node 

positions and hence have analytical (or exact) derivatives of the system matrix 

with respect to the shape design parameters [20]-[22]. This in turn leads to an 

accurate response derivative calculation (often referred to as ‘analytical’ or 

‘exact’ sensitivity). Note that such calculation still depends on the local field 
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solution in the volume of interest and, therefore, its accuracy is determined by the 

numerical accuracy of the field solution. These two features give FEM solvers 

great advantage in implementing the adjoint sensitivities. In 2009, the sensitivity 

analysis of S-parameters was implemented for the first time in the FEM-based 

solvers of Ansoft HFSS [38], [39], and CST STUDIO SUITE [40]. 

In 2005, Bakr et al. proposed a technique for estimating adjoint  

S-parameter sensitivities with the time-domain TLM method. They show for the 

first time that for a lossless, homogeneous and isotropic structure, the TLM 

simulations utilized for the S-parameter calculations are sufficient to estimate 

their sensitivities as well [23]. 

In 2006, Nikolova et al. proposed a general approach, named self-adjoint 

sensitivity analysis (SASA), for the sensitivity analysis of microwave network 

parameters both in the frequency domain and in the time domain [24], [25]. The 

field solution in the time domain can be simply transformed into the frequency 

domain via Fourier transform. Contrary to the traditional AVM approaches, the 

adjoint simulation has been eliminated, so only one simulation is enough to yield 

both the responses and their sensitivities. It is shown that the EM field solution of 

the adjoint problem is related to the field solution in the original problem by a 

factor called self-adjoint coefficient, which is not dependent on the design 

parameters. 

In order to implement this method as a post-processing toolbox, the EM 

simulator must have certain features [24]. First, it must be able to export the 
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system matrix and the field/current vector solution. Second, it must be able to 

allow some control over the mesh generation so that the mesh topology remains 

unchanged upon parameter perturbation. There are some difficulties involved with 

the first feature. Most commercial simulators do not provide access to their 

system matrix. Besides, even if the system matrix is accessible, it is typically very 

large, especially for practical high-frequency structures. Therefore, it takes too 

much time and memory to export the system matrix to the computer disk. As a 

result, the superior performance of the AVM is largely offset by the long time to 

write/read the system matrix to/from the disk. 

The main drawback of all previous implementations of the adjoint-

variable method is that they depend on the simulation tool generating the field 

solution. The main reason is the need for the derivatives of the system matrix with 

respect to the designable parameters. The system matrix describing the EM 

problem arises from the particular mathematical model and the discretization 

technique adopted by the simulation tool. So, there is a need to develop a more 

general method which is not dependent on the method of simulation. 

Recently, a simulator-independent method has been proposed for the 

evaluation of the sensitivity analysis of S-parameters based on the finite-

difference frequency-domain (FDFD) method, named finite-difference frequency-

domain self-adjoint sensitivity analysis (FDFD-SASA) [27]-[30]. This new 

sensitivity solver is independent of the simulator's discretization method, grid and 

system equations. It relies on its own central-node finite-difference grid and a 
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sensitivity formula based on the FDFD equation for the electric field. The only 

requirement of the EM simulator is to perform the original system analysis and to 

export the field solution in particular locations referred to as the perturbation 

regions. Therefore, this method can be implemented as a post-processing plug-in 

with all commercial EM solvers. A note should be made here that the finite-

difference grid does not imply the need for any new simulations. 

While the proposed method provides an exact formulation for the 

sensitivity analysis of material parameters, e.g., permittivity, permeability, and 

conductivity, there is an approximation involved in the sensitivity analysis of the 

shape parameters [25], [30]. Since the structure is discretized on a finite-

difference grid, the adjoint solution becomes parameter-dependent and needs to 

be calculated for different parameter perturbations. This implies the need to 

perform as many adjoint system analyses as the number of optimizable 

parameters which would completely offset the computational advantage of 

FDFD-SASA. 

The need for more simulations is eliminated by using the field mapping 

technique of Bakr et al. [16], in which the required adjoint field solution in the 

perturbed structure is approximated with the adjoint solution in the original 

structure. The reason is that for a very small parameter perturbation, the field 

solution of the perturbed structure is not changing very much around the 

perturbed object; thus, it can be approximated by simply transferring the field 
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solution of the original structure in the direction of parameter change by one cell 

size. 

Recently, a new algorithm has been proposed in which the adjoint variable 

method is applied with conformal boundary modeling exploiting rubber cells [31]. 

Using the idea of rubber cells introduced by Huilian et al. [31], the scattering 

matrix is expressed as an analytical function of both shape and material 

parameters which leads to exact sensitivity analysis with respect to all type of 

design parameters. 

1.1 MOTIVATION 

Although, there has been good progress in the implementation of the self-

adjoint sensitivity analysis of the S-parameters of microwave structures, a general 

simulator-independent exact method for the shape parameters is still not available. 

The previously proposed FDFD-SASA algorithm [35][26]-[30] can provide the 

analytical derivatives with respect to material parameters only. 

There is another possibility to calculate the exact sensitivity derivatives by 

the use of the analytic finite-element system matrix derivatives in conjunction 

with the field solution obtained by any valid electromagnetic analysis [33], [34], 

e.g., MoM or FDTD, since the field solution is unique for the given boundary 

conditions and excitation. In practice, however, such a hybrid approach is difficult 

to implement. First, finite-element meshing and discretization tools must be 
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available. Second, the excitation schemes differ between the various methods, 

making it difficult to adjust properly the self-adjoint constants. 

The proposed sensitivity analysis method which uses the rubber cells [31] 

can calculate the exact sensitivity information with respect to shape parameters. 

However, it is not a simulator independent algorithm and still needs the system 

matrix information of the TLM method. 

In this thesis, we aim at developing a method which is simulator-

independent and can provide the exact sensitivities with respect to shape 

parameters. As a first step, we focus on metallic shape parameters, although the 

method is extendable to dielectric shape parameters. 

1.2 CONTRIBUTIONS 

Here, we present a method for self-adjoint sensitivity analysis of the 

scattering matrix with respect to the shape parameters of metallic components in 

microwave structures [35]. There is no need to obtain the system matrix or to 

know the discretization grid of the used simulator. The method is exact. It uses an 

analytical formulation based on Maxwell’s equations alone. The derived self-

adjoint sensitivity formula requires only the knowledge of the field (or the surface 

current density) at the surface of the metallic object of interest which makes it a 

good candidate to be used in solvers based on the MoM and the FDTD. 

The author’s contributions can be summarized as follows: 
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1) The development of an analytical sensitivity computation algorithm 

for shape parameters of volumetric metallic structures. 

2) The development of an analytical sensitivity computation for shape 

parameters of infinitesimally thin metallic structures. 

3) The implementation and validation of the method for volumetric and 

infinitesimally thin metallic structures with the commercial EM 

solver Ansoft HFSS® [39] and MATLAB® [41]. 

1.3 OUTLINE OF THESIS 

Chapter 2 begins with the review of the FDFD-SASA formulation based 

on the E-field Helmholtz equation. The implementation of this method for 

metallic shape parameters is explained briefly. 

Chapter 3 describes the methodology of the proposed analytical SASA 

method for volumetric metallic shape parameters and includes both formulations 

for finite-conductivity and infinit-conductivity metallic structures. The final 

formulation is validated by three examples and the results are compared with the 

reference derivatives provided with the EM solver Ansoft HFSS [39]. 

Chapter 4 is the extension of the theory for volumetric metallic structures 

described in chapter 3, to the infinitesimally thin metallic objects. The final 

formulation is validated by an example and the results are compared with the 

reference derivatives provided with the EM solver Ansoft HFSS. 

The thesis concludes in Chapter 5 with suggestions for further research. 
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Chapter 2 

METHODOLOGY OF THE SELF-
ADJOINT SENSITIVITY 
ANALYSIS FOR METALLIC 
SHAPE PARAMETERS 
 
2.1 Introduction 

Design sensitivity analysis (DSA) aims at finding the derivatives of the 

system responses in the design-parameter space. This information is widely used 

in engineering problems such as optimization, modeling, tolerance and yield 

analyses. If sensitivities are required, a simple but inefficient finite-difference 

(FD) approximation at the response level is usually carried out, which requires at 

least one additional system analysis for each designable parameter. Furthermore, 

FD gradient approximations are very susceptible to the numerical errors in the 

simulation results since the response function in the EM problem is only accurate 
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to a level determined by the mesh convergences error. In addition, the EM 

responses may exhibit highly nonlinear behaviour in the design-parameter space. 

On the other hand, the adjoint-based methods are known to be the most 

efficient methods for sensitivity analysis, especially for problems of high 

complexity where the number of design variables is large [1]-[3]. The adjoint-

variable method yields the responses and their sensitivities with respect to all 

designable parameters through two system analyses, namely the original structure 

and the adjoint (auxiliary) structure, where the latter is built through some 

straightforward rules. 

A variety of feasible AVM approaches for field-based EM analyses have 

been proposed, both in the time domain (the transmission-line method, TLM [4], 

and the finite-difference time-domain method, FDTD [5]) and in the frequency 

domain (the frequency-domain TLM [6], [7], finite-element-method (FEM), and 

the method of moments, MoM [8]). Since the adjoint simulation has response-

dependent excitation, all traditional AVM approaches require modifications of the 

EM simulators to solve the adjoint problem. This makes them difficult to 

implement. 

In 2005, Bakr et al. proposed a technique for estimating adjoint  

S-parameter sensitivities with the time-domain TLM method. They show for the 

first time that for a lossless, homogeneous and isotropic structure, the TLM 

simulations utilized for S-parameter calculations are sufficient to estimate their 

sensitivities as well [9]. 
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Nikolova et al. proposed a general approach, named self-adjoint 

sensitivity analysis (SASA), for the sensitivity analysis of microwave network 

parameters both in the frequency domain and in the time domain [10], [11]. 

Contrary to the traditional AVM approaches, the self-adjoint sensitivity analysis 

exploits the nature of the linear problem and eliminates the adjoint system 

analysis for certain objective functions, i.e., network parameters [8], [10]. While 

there is no need for the adjoint simulation, this method still employs 

approximations in the case of shape parameters and it depends on the method of 

simulation. 

Recently, a simulator-independent method has been proposed for the 

evaluation of the sensitivity analysis of S-parameters based on the finite-

difference frequency-domain (FDFD) method, named finite-difference frequency-

domain self-adjoint sensitivity analysis (FDFD-SASA) [13]-[15]. This new 

sensitivity solver is independent of the simulator's discretization method, grid and 

system equations. The only requirement of the EM simulator is to perform the 

original system analysis and to export the field solution in particular locations 

referred to as the perturbation regions. The proposed method can provide exact 

sensitivity derivatives with respect to material parameters. However, there is still 

an approximation involved in the sensitivity analysis with respect to shape 

parameters. 

In this chapter, the methodology of FDFD-SASA method is briefly 

reviewed. Since metallic shape parameters are the focus of this thesis, the 
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implementation of the FDFD-SASA method for metallic shape parameters is 

reviewed in detail. 

2.2 Self-adjoint Sensitivity Analysis of Network 

Parameters [11] 

In this work, we focus on the S-parameter sensitivity analysis based on the 

volume E-field solution in the frequency domain such as that produced by the 

finite-element method (FEM). To obtain the full scattering matrix of an N-port 

structure, N simulations are carried out with one of the ports being excited while 

the rest of the ports are matched. If the jth port is excited, the kjS  parameters are 

defined as [17] 

 

( )( )
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S

kj kjinc
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E h
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…

 (2.1) 

where ν denotes the desired EM mode, ( )ν
ξh  (ξ = j, k) is the magnetic modal 

vector, jE  is the electric field solution in the volume of the structure when port j 

is excited and all other ports are matched, and inc
jE  is the incident-field vector at 

the jth port cross-section. In the definition of (2.1), only the E-field components 

that are tangential to the port surfaces contribute to the integral. The distribution 

of the tangential E-field of the mode ν at port ξ is described by the electric modal 
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vector ( )ν
ξe , which relates to ( )ν

ξh  through Maxwell equations. In the case of 

isotropic loss-free ports, the modal vectors are real valued [17]. 

The general self-adjoint sensitivity formulation for the scattering 

parameters of a multi-port electromagnetic structure is derived in [11]. This 

formulation is based on the E-field vector Helmholtz equation and has no 

dependence on the numerical technique which is used for the analysis of the 

structure. It only needs the field solution in the volume of the structure and hence 

can be applied with any EM simulator providing volume field solution. 

The sensitivity formula of the scattering parameters with respect to the 

design parameter np , for any desired EM mode, can be written as 

 
( )

,  and 1, , .jkj
kj k

n n

RS
d j k N

p p
κ

Ω

∂∂
= ⋅ Ω =

∂ ∂∫∫∫
E

E "  (2.2) 

Here, Ω  is the computational volume and kjκ  is the self-adjoint coefficient, 

which is independent of the design parameter. It is defined as 

 
( )0

1
2kj

k jV V j
κ

ωμ
=  (2.3) 

where jV  and kV  are the modal magnitudes of the incident waves at ports j  and 

k , respectively, ω  is the angular frequency, and 0μ  is the permeability of 

vacuum. 
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The important term in (2.2) is the residual derivative ( ) /∂ ∂E j nR p  which 

involves the respective derivatives of the coefficients in the E-field Helmholtz 

wave equation: 

 
( ) ( )2

,
i

j j
j

n n n n

R C
p p p p

α∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂

E E GE  (2.4) 

where 

 ( ) ( )
2 1

12
0 0

0

1 tan
.

r

r d
i i

C
k j j

j

μ
α ε δ σ ωε

ωμ

−

−
= −∇× ∇×

⎡ ⎤= − −⎣ ⎦
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 (2.5) 

In (2.5), 0ε , εr , tanδd , and σ  are the permittivity of vacuum, the relative 

permittivity, the loss tangent, and the conductivity of the medium, respectively. 

The vacuum wave number is 0k . Ji  represents the imposed current sources in the 

volume of the structure. 

A note should be made here about the parameter np . In the derivation of 

(2.2), it is assumed that the geometry of the port cross-section is not affected by 

the change in the parameter pn [8]. Therefore, this theory is valid for problems in 

which the ports geometry is independent of the design parameter. This is the usual 

case in practice and this assumption does not limit significantly the applicability 

of the method. 
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2.3 Implementation of the FDFD-SASA Method 
for Metallic Shape Parameters [11], [15]-[16] 

The drawback of the FDFD-SASA is that the sensitivity formula is not 

exact in the case of shape parameters since a finite-difference grid is used. The 

shape parameters are constrained to values that are integer multiples of the grid 

step size, i.e., np xΔ = ±Δ , or y±Δ , or z±Δ . Thus, the system coefficients are not 

analytical derivatives with respect to the shape parameters. 

When central finite differences are applied to the E-field Helmholtz 

equation, the finite-difference equation 

 2 iC α+ =E E G  (2.6) 

is obtained, where 

 ( ) ( )
2 2 1

12
0 0

0

,
1 tan ,
.

r

r d
i i

C h
k j j

j

μ
α ε δ σ ωε

ωμ

−

−
≈ −Δ ∇× ∇
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=G J

 (2.7) 

Here, 0ε , ε r , tanδd , σ , 0k  and iJ were defined already at equation (2.5). For the 

case of metallic structures, iG  arises from the induced currents at metallic 

objects. ( )min , ,h x y zΔ = Δ Δ Δ  denotes the smallest discretization step of the 

finite-difference mesh. 2C  is the central finite-difference approximation of the 

double curl operator. 

Similarly to (2.2), a second-order formula can be developed for the shape 

sensitivity analysis of S-parameters as 
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where nΔ  denotes a change due to the perturbation of pn and ( )k n
E  refers to the 

field solution in the nth perturbed state. The difference residual term 

( ) /n j nR pΔ ΔE  is defined as 

 
2( )

.n j n j n jn
j

n n n n

R C
p p p p

αΔ Δ ΔΔ
= + ⋅ −

Δ Δ Δ Δ

E E G
E  (2.9) 

The field ( )k n
E , 1, ,n N= … , in (2.8) is formally dependent on the 

parameter perturbation npΔ  because for each shape parameter there is a different 

adjoint field. However, all these field solutions can be derived from the field 

solution of the nominal (unperturbed) structure kE  by a simple coordinate 

translation by one discretization step ( xΔ , yΔ , or zΔ ) in the direction of the 

assumed perturbation [18]. Thus, only one system analysis is sufficient to obtain 

all necessary information for the sensitivity analysis. 

With (2.8)-(2.9), the FDFD-SASA becomes independent from the 

simulator's grid, system equations and discretization method. It uses its own FD 

grid and FDFD system equations. The only requirement of the simulator is to 

export the field solution at the perturbation grid points and at the corresponding 

excitation ports (to compute the self-adjoint constant). The perturbation region is 

the region where the system coefficients change due to the perturbation of the 

designable parameters. 
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The implementation of (2.8) for metallization and de-metallization 

problem is different which is explained in the following two sub-sections. 

2.2.1 Metallization 

In the case of metallization, the assumed perturbation Δpn implies a 

change of grid cell adjacent to the metallic object from dielectric (e.g. air) to 

metal. As an example, a cross-sectional view of a metallic object is shown in 

Figure 2.1 on a finite-difference grid whose step size equals xΔ . The object in the 

nominal state is shown in dark gray while in the nth perturbed state it is longer 

and includes the light-gray cells. The light-gray cells are thus “metallized” as a 

result of the perturbation. In the nominal state, the field components in this cell 

are not zero, while in the nth perturbed state, they must be set to zero. This change 

affects the 2C  system coefficients at all neighbouring points [marked with black 

circles in Figure 2.1]. 

Since in the nth perturbed state, the field solution of the white dots is zero, 

the respective cells don not have contribution to the sensitivity integral. Thus, 

only the E-field solution at the black circles is exported and used in the 

calculation. In this case, the system residual derivative ( ) /n j nR pΔ ΔE  reduces to 

 
2( )

.n j n j

n n

R C
p p

Δ Δ
=

Δ Δ

E E
 (2.10) 
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(a) (b)

np np
yx

z

np xΔ = Δ

( ), ,i j k
 

Figure 2.1 Illustration of the metallization of a metallic post for the shape 
parameter np : (a) locations (the black dots) where the double-curl operator 2C  is 
affected due to metallization at the white dots; jE  is recorded at the white dots; 

(b) locations where kE  is recorded and mapped to ( )k n
E  at the black dots of 

Figure 2.1 (a). 

The values of ( )k n
E  at the black dots are obtained through the field mapping by 

exporting the field solution of the nominal structure at the points designated with 

crosses as shown in Figure 2.1 (b). 

2.2.2 De-metallization 

In the case of de-metallization, the assumed perturbation Δpn implies that 

boundary cells of the metallic object are changing into dielectric (e.g. air). The  
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(a) (b)

np np
yx

z

np xΔ = −Δ

 

Figure 2.2 Illustration of the de-metallization of a metallic post for the shape 
parameter np : (a) locations (the black dots) where jG  is affected due to de-

metallization; jE  is recorded at the white dots; (b) locations where kE  is 

recorded and mapped to ( )k n
E  at the black dots of Figure 2.2 (a). 

analysis of (2.9) shows that the term 2
nCΔ E  at the “demetallized” cells is always 

zero due to zero values of E  [light-gray cells in Figure 2.2 (a)]. However, due to 

the changes in the induced current densities at the metallic surfaces, the nΔ G  

terms are non-zero at these points. In this case, the system residual derivative 

( ) /n j nR pΔ ΔE  reduces to 

 
( )

.n j n j

n n

R
p p

Δ Δ
= −

Δ Δ

E G
 (2.11) 

It can be shown that 

 2 .n j n jCΔ = ΔG E  (2.12) 
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The term 2
n jCΔ E  is non zero at both white and black dots but the original field 

jE  at the black dots is zero. ( )k n
E  at the black dots is also needed and it is 

obtained from kE  of the nominal structure through the field mapping where kE  at 

the points denoted with the crosses in  Figure 2.2 (b) is made equal to ( )k n
E

 
at 

the black dots. 
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Chapter 3 

SELF-ADJOINT SENSITIVITY 
ANALYSIS OF VOLUMETRIC 
METALLIC STRUCTURES 
 
3.1 Introduction 

Recently, significant progress has been made toward the development of 

electromagnetic sensitivity-analysis tools. The traditional response-level gradient 

approximations for the scattering parameters have been already replaced in some 

commercial finite-element analysis packages [1][2] by efficient and accurate self-

adjoint sensitivity computations. The theoretical basis for the self-adjoint 

sensitivity analysis of network parameters of high-frequency structures can be 

found in [3] along with implementations on finite-difference grids.  

The advantage of the finite-element based sensitivity analysis over the 

finite-difference implementations is that the finite-element system matrix is an 

analytical function of the mesh node positions [4][5] thereby allowing for 
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analytical (or exact) derivatives of the system matrix with respect to shape 

parameters. Note that such calculation still depends on the local field solution in 

the volume of the shapes of interest and, therefore, its accuracy is determined by 

the numerical accuracy of the field solution. 

The system matrices arising in methods employing finite-difference grids 

are not analytically differentiable with respect to shape parameters and 

approximations of the derivatives of the system coefficients are needed [3][6]. 

Similar problem arises in a number of method-of-moment (MoM) discretization 

techniques. The sensitivity calculation could utilize the analytic finite-element 

system matrix derivatives in conjunction with the field solution obtained by any 

valid electromagnetic analysis [7], e.g., MoM or FDTD, since the field solution is 

unique for the given boundary conditions and excitation. In practice, however, 

such hybrid approach is difficult to implement. First, finite-element meshing and 

discretization tools must be available. Second, the excitation schemes differ 

between the various methods, making it difficult to adjust properly the self-adjoint 

constants [3]. 

In this thesis, we present a method for self-adjoint sensitivity analysis of 

the scattering matrix with respect to the shape parameters of metallic components 

in microwave structures. This method is exact. It uses an analytical formulation 

based on Maxwell’s equations alone. There is no need for the system matrix or 

discretization grid information of the field-analysis method. The derived self-



M.A.Sc. Thesis––M. Sadegh Dadash         Chapter 3           McMaster University––E&CE 

 

37 
 

adjoint sensitivity formula requires only the knowledge of the field (or the surface 

current density) at the surface of the metallic object of interest. 

The theoretical outline of the proposed method is explained for volumetric 

metallic structures in section 3.3. In section 3.4, the implementation of the 

proposed method for finite-conductivity metallic structures is presented together 

with a two-section impedance-transformer example [10]. Section 3.5 presents the 

implementation of this method in two examples: an H-plane waveguide filter [9] 

and a two-section impedance transformer where the metal is set to PEC [10]. 

3.2 Modal Magnitude Calculation 

The field solution in any electromagnetic problem can be viewed as the 

superposition of modal vector fields of the particular structure: 

 

( )

( )

,

.

V

V

ν
ν

ν

ν
ν

ν

=

=

∑

∑

E e

H h
 (3.1) 

Here, ( )νe  and ( )νh  are the electric and magnetic modal vectors of the mode ν and 

the weighting coefficient νV  is the modal magnitude. 

The pairs of modal vectors form a bi-orthogonal set and have to be 

suitably normalized. The common bi-orthonormal relationship is 

 ( ) ( ) 1,          if 
,

0,          if  
jS

dν ν ν ν
ν ν

′ ′=⎧
× ⋅ = ⎨ ′≠⎩

∫∫ e h s  (3.2) 

where Sj is the jth port cross-section. 
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Using the Poynting theorem together with (3.2) leads to a relation between 

the excitation power at the jth port and the modal magnitudes of the excited field 

as 

 2
-port

1 1 .
2 2

j

inc inc
j

S

P d Vν
ν

⎛ ⎞= × ⋅ =⎜ ⎟
⎝ ⎠

∑∫∫ E H s  (3.3) 

We use Ansoft HFSS® [1] for our simulation examples and the excitation 

is done through wave ports. By default, the excitation power at a wave port is set 

to 1 W. So, if only one mode, e.g. mode ν, is excited then the modal magnitude of 

the incident field Vν can be calculated as 

 
2

-port 1  2.
2j

VP Vν
ν= = ⇒ =  (3.4) 

3.3 Exact Sensitivity Analysis of Volumetric 

Metallic Shape Parameters [12] 

In any electromagnetic problem, the change in the shape parameter can be 

viewed as a change in the material parameters of the region which is affected by 

the shape-parameter perturbation. This helps find a way to deal with material 

parameters instead of shape parameters. The advantage of this approach is that the 

Helmholtz equation coefficients are analytically differentiable with respect to the 

material parameters while this is not the case with shape parameters. 
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The starting point is the sensitivity expression of the scattering parameters 

explained in chapter 2. This expression is repeated here for the sake of easy 

referencing: 

 
( )

,  and 1, , ,jkj
kj k

n n

RS
d j k N

p p
κ

Ω

∂∂
= ⋅ Ω =

∂ ∂∫∫∫
E

E  (3.5) 

where 

 
( )0

1 ,
2kj

k jV V j
κ

ωμ
=  (3.6) 

 
( ) ( )2

,
i

j j
j

n n n n

R C
p p p p

α∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂

E E GE  (3.7) 

and 

 ( ) ( )
2 1

12
0 0

0

1 tan
.

r

r d
i i

C
k j j

j

μ
α ε δ σ ωε

ωμ

−

−
= −∇× ∇×

⎡ ⎤= − −⎣ ⎦
=G J

 (3.8) 

By applying the chain rule, the residual derivative ( ) /∂ ∂E j nR p  in (3.7) 

can be expanded via the constitutive parameters as 

 
( ) ( ) ( ) ( )

.j j j jr r

n r n r n n

R R R R
p p p p

ε μ σ
ε μ σ

∂ ∂ ∂ ∂∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂

E E E E
 (3.9) 

In the above expression, each of the constitutive parameters, εr , μr , and σ , 

should be considered as diagonal tensors since they are not the same in the 

different directions. For example, the last term in (3.9) can be expanded further as 

 
( ) ( ) ( ) ( )

1 2

1 2

j j j j

n n n n

R R R R
p p p p

τ τ ζ

τ τ ζ

σ σ σσ
σ σ σ σ

∂ ∂ ∂ ∂∂ ∂ ∂∂
⋅ = ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

E E E E
 (3.10) 
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2̂τ
1̂τ

ζ̂
np

SΩ

perturbation face

 

Figure 3.1 A metallic shape with the design parameter pn. 1̂τ  and 2̂τ  are the 
tangential unit vectors and ζ̂  is the normal unit vector to the perturbation surface 
SΩ  of the metallic shape. 

where τ1, and τ2 denote the two tangential directions and ζ  is the normal direction 

on the surface of the metal as shown in Figure 3.1. 

The term of ( ) /j nR p∂ ∂E  in (3.5) assumes analytical derivatives which 

exist only with respect to the constitutive parameters of the medium as per (3.7)-

(3.8). The first term in the right-hand side of (3.7) depends on the relative 

permeability while the second term depends on both the relative permittivity and 

the conductivity of the medium. Since in most microwave simulations the 

imposed magnetic and electric sources exist on the surface of the ports rather than 

in the volume of the simulation, the last term in (3.7) does not have any 

contribution in our development and is set to zero. 
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In the case of using non-magnetic metallic objects, the values of εr  and 

μr  are equal to one. If the surrounding medium is vacuum, then the values of 

these two parameters are not changing between the metallic structure and the 

vacuum. Therefore, the residual derivatives with respect to εr  and μr  are zero 

and only the residual derivative with respect to the conductivity remains. Thus, 

 0.r r

n np p
ε μ∂ ∂

= =
∂ ∂

 (3.11) 

The expression for ( ) /j nR p∂ ∂E  can be further reduced bearing in mind its terms 

as shown in (3.8). The only part which has dependence on the conductivity is the 

second term. Therefore, ( ) /j nR p∂ ∂E  reduces to 

 
( ) ( )

.j j
j

n n n

R R
p p p

σ α σ
σ σ

∂ ∂ ∂ ∂ ∂⎛ ⎞= ⋅ = ⋅⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

E E
E  (3.12) 

For a metallic object, the conductivity is constant inside and outside of the 

object. The only place where it changes abruptly is on the surface of the metallic 

object, which is called the perturbation surface [see Figure 3.1]. If we assign a 

constant value σm  to the conductivity of the metallic medium, then the directional 

derivative of the conductivity in the ζ̂  direction is 

 ( ) 1 2, , ,m
ϑσ σ δ ζ ϑ τ τ ζ
ζ

∂
= − =

∂
 (3.13) 

where � denotes different directions on the surface of the metal and ( )δ ζ  is the 

Dirac delta function. 
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In (3.12), we are interested in the derivative with respect to pn rather than 

the directional derivative in the ζ̂  direction. The relationship between these two 

derivatives can be explained through the finite-difference approximation shown in 

Figure 3.2. The derivative with respect to the spatial variable ζ can be 

approximated as 

 air .
2

mϑσ σ σ
ζ

∂ −
≈

∂ Δ
 (3.14) 

On the other hand, the derivative of the conductivity with respect to the shape 

parameter pn is approximated as 

 air .
2

m

np
ϑσ σ σ∂ −
≈

∂ Δ
 (3.15) 

Thus, / /npϑ ϑσ σ ζ∂ ∂ = −∂ ∂ . Also, 

 ( ) 1 2, , , .m
np
ϑσ σ δ ζ ϑ τ τ ζ∂
= =

∂
 (3.16) 

The next step in (3.12) is to calculate the term ( )/ jα σ∂ ∂ E . From the 

definition in (3.8) it follows that in metals ( ) 12
0 01k jα σ ωε −⎡ ⎤= −⎣ ⎦ . Then, the 

derivative of α  with respect to the conductivity is 

 0.jα ωμ
σ
∂

= −
∂

 (3.17) 

However, the multiplication of (3.17) with jE  causes some ambiguity which does 

not allow for the same treatment of both tangential and normal components. This 

is explained below. 
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1

np np

(a)

(b)

( )
air

0

ϑσ ζ
σ
+ Δ

=
=

Δ Δ

ζ + Δ ζ − Δ

( )
m

ϑσ ζ
σ
− Δ

=

ζ̂

np

( )
air

0

npϑσ
σ
+ Δ

=
=

( )n

m

pϑσ
σ
− Δ

=

 

Figure 3.2 Finite-difference (FD) representation of: (a) /ϑσ ζ∂ ∂  and (b) 
/ npϑσ∂ ∂ , at the interface between metal and air. White and black circles indicate 

the inside and the outside of the metal. The dash line indicates the position in 
space where the conductivity is evaluated. Δ is the step size in the FD 
approximation of the derivatives. 
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As is known from the electromagnetic boundary conditions, the normal 

component of the electric field is not continuous on the surface of the metal while 

the tangential component is continuous because there are no magnetic sources, 

0i =M . The boundary conditions are stated below: 

 
( )

( )

0

0

ˆ ,

ˆ .

i

air metal i air metal

air metal s

τ τζ

ρζ
ε

=

× − = − ⇒ =

⋅ − =

M
E E M E E

E E
 (3.18) 

If we try to find ( )/ jα σ∂ ∂ E  in two cases, first, approaching the surface 

from the air (right limit), and then approaching the surface from the metal (left 

limit), the expressions for the normal and tangential field components are: 

 

( )

( )

( )

, 0 ,0

, 0 ,0

, 0 ,0

lim E E ,

lim E E ,

lim .

air
j m j

n

metal
j m j

n

air
j m j

n

j
p

j
p

j
p

ζ ζ
ζ ζζ

ζ ζ
ζ ζζ

τ τ
τ τζ

α σ
σ ωμ δ ζ

σ

α σ
σ ωμ δ ζ

σ

α σ σ ωμ δ ζ
σ

+

−

±

→

→

→

∂ ∂⎛ ⎞
⋅ = −⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞
⋅ = −⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞ ⋅ = −⎜ ⎟∂ ∂⎝ ⎠
E E

 (3.19) 

While the tangential part gives the same answer for the two limits, the normal part 

gives different answers, thus causing ambiguity. Therefore, the two contributions 

require different treatment which is investigated in the next two sub-sections. 

3.3.1 Contribution of the Tangential E-field Components 

In this sub-section, the metallic structures are divided into two categories: 

of finite conductivity and perfectly conducting structures. The contribution of the 
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tangential E-field components in the sensitivity formula is then found for both 

categories. 

a) Finite Conductivity Metallic Structures 

Using (3.16) and (3.17) in (3.12), the residual-derivative expression for the 

tangential E-field components is 

 
( ) ( ),

0 , .j air
m j

n

R
j

p
τ

τσ ωμ δ ζ
∂

= −
∂

E
E  (3.20) 

Thus, the tangential part of the sensitivity formulation in (3.5) is 

 ( ) ( )0 , , .kj m k jI j dτ τ τωμ κ σ δ ζ
Ω

= − ⋅ Ω∫∫∫E E  (3.21) 

Due to the presence of the Dirac delta function in (3.21), the volume 

integral reduces to the surface integral on the perturbation face of the metallic 

object, i.e., 

 ( )0 , , .kj m k j
S

I j dsτ τ τωμ κ σ
Ω

= − ⋅∫∫E E  (3.22) 

b) Perfectly Conducting Metallic Structures 

The expression in (3.22) is only applicable for metallic structures with 

finite conductivity. To develop this theory in the case of perfect electric conductor 

(PEC) structures, the limit of (3.22) as σm  goes to infinity must be found. 

As the metal conductivity goes to infinity, the tangential E-field 

components tend to zero. This leads to multiplication of the infinite conductivity 

with the zero electric field. This ambiguity can be solved by using the surface 
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impedance concept to relate the tangential E-field components to the surface 

current density s
jJ . The surface impedance boundary condition is 

 , ,s
j s jZτ =E J  (3.23) 

where 

 
0

1 1and .s s
m s m

jZ
f

δ
σ δ π μ σ
+

= =  (3.24) 

Here, f  is the frequency, sZ  is the surface impedance of the metal, and δs  is the 

skin depth. 

Using (3.23) and (3.24), the contribution of the tangential E-field 

components in the sensitivity integral of (3.21) for a shape parameter of a PEC 

structure is obtained as 

 ( )2
0 .s s

kj k j
S

I dsτ κ ωμ
Ω

= ⋅∫∫ J J  (3.25) 

3.3.2 Contribution of the Normal E-field Component 

The normal component of the residual derivative in (3.12) can be 

expanded as 

 
( ) ( ), ,

, , .j j
j j

n n n n

R E E
E E

p p p p
ζ ζ

ζ ζ
α α α

∂ ∂∂ ∂
= = −

∂ ∂ ∂ ∂
 (3.26) 

According to (3.8), in metals ( )0 0j jα ωμ ωε σ= − + . This helps to relate 

the expression for the term ,jE ζα  to the normal component of the current density 

,jJ ζ  which includes both displacement and conduction current density terms: 
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 , 0 , .j jE j Jζ ζα ωμ= −  (3.27) 

So, the first term in the right-hand side of (3.26) can then be related to the 

derivative of the ,jJ ζ  with respect to pn, and (3.26) is rewritten as 

 
( ), , ,

0 .j j j

n n n

R E J E
j

p p p
ζ ζ ζωμ α

∂ ∂ ∂
= − −

∂ ∂ ∂
 (3.28) 

The derivative , /j nE pζ∂ ∂  in (3.28) can be related to , /jE ζ ζ∂ ∂  through 

the procedure summarized by (3.14)-(3.15): 

 , , , ,, .j j j j

n n

E E J J
p p

ζ ζ ζ ζ

ζ ζ
∂ ∂ ∂ ∂

= − = −
∂ ∂ ∂ ∂

 (3.29) 

In order to find , /jE ζ ζ∂ ∂ , we use the Gauss law, 

 
0

,vρ
ε

∇⋅ =E  (3.30) 

where vρ  is the volume charge density. 

The three-dimensional (3-D) divergence operator can be broken down into the 

normal derivative ( / ζ∂ ∂ ), and the tangential operator τ∇  as 

 ,
,

0

,j v
j

E ζ
τ τ

ρ
ζ ε

∂
+ ∇ ⋅ =

∂
E  (3.31) 

where  

 1 2
1 2

ˆ ˆ .τ τ τ
τ τ

⎛ ⎞∂ ∂
∇ = +⎜ ⎟∂ ∂⎝ ⎠

 (3.32) 

Next, the continuity equation can be used to calculate , /jJ ζ ζ∂ ∂ . It is 

written as 
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 ,vjωρ∇ ⋅ = −J  (3.33) 

which can also be expressed as 

 ,
, .j

j v

J
jζ

τ τ ωρ
ζ

∂
+∇ ⋅ = −

∂
J   (3.34) 

Substituting (3.29), (3.31) and (3.34) in (3.28), we obtain 

 

( ) ( ),
0 , ,

0

2
0 0 , ,

0

.

j v
v j j

n

v j j

R E
j j

p

j

ζ
τ τ τ τ

τ τ τ τ

ρωμ ωρ α
ε

αω μ ρ ωμ α
ε

∂ ⎛ ⎞
= − −∇ ⋅ + −∇ ⋅⎜ ⎟∂ ⎝ ⎠
⎛ ⎞

= + − ∇ ⋅ − ∇ ⋅⎜ ⎟
⎝ ⎠

J E

J E
 (3.35) 

With the use of (3.27), the last two terms in the right-hand side of (3.35) cancel. 

Since ( )0 0j jα ωμ ωε σ= − + , we can write 

 
( ), 2 0

0
0

2 .j
m v

n

R E j
p

ζ ωμω μ σ ρ
ε

∂ ⎛ ⎞
= −⎜ ⎟∂ ⎝ ⎠

 (3.36) 

From now on, we can treat the problem as if the current and charge 

densities have uniform volume distribution inside one skin depth of the metal 

rather than having surface distribution on the surface of the metal. This is a very 

good approximation for good conductors. Furthermore, we will find the limit 

when the conductivity goes to infinity by reducing the skin depth to zero. All field 

quantities, e.g., E-field, H-field, sJ , and vρ , are assumed to be nonzero and to 

have uniform distribution in one skin depth inside the metallic object. 
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Assuming a uniform volume charge density distribution inside one skin 

depth of the metal and using the Gauss law, the relationship between vρ  and the 

normal E-field at the surface of the metal inside the air air
,jE ζ  can be obtained as 

 
air

0 ,( ) .j
v

s

E ζε
ρ ζ

δ
=  (3.37) 

Substituting (3.37) in (3.36), the expression for ( ),E /j nR pζ∂ ∂  can be written as 

 
( ) air

, 0 ,2 0
0

0

2 .j j
m

n s

R E Ej
p

ζ ζεωμω μ σ
ε δ

∂ ⎛ ⎞
= −⎜ ⎟∂ ⎝ ⎠

 (3.38) 

The integration for the contribution of the normal field component in the 

sensitivity integral in (3.5) should be done in the metal. At the same time, we have 

access to E-field solution on the surface of the metal. So, the boundary condition 

for the normal E-field component at the surface for a finite mσ  is used. 

 met air
, ,

0

1 ,
1

j j
m

E E
j

ζ ζσ
ωε

=
−

 (3.39) 

where met
,jE ζ  is the normal E-field component inside the metal at the interface. 

This is done through the use of the continuity of the normal component of the 

electric flux density ,jD ζ  since there is no surface charge when mσ  is finite. 

Using (3.38)-(3.39), the contribution of the normal component of the E-

field in the sensitivity integral of (3.5) is obtained as 
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2 0
0

air air00
, ,

0

2

1

m

kj j j
m s

j

I E E d
j

ζ ζ ζ

ωμω μ σ
εεκ σ δ

ωε
Ω

⎛ ⎞−⎜ ⎟
= ⎜ ⎟ ⋅ Ω

⎜ ⎟−⎜ ⎟
⎝ ⎠

∫∫∫  (3.40) 

Since, everything is constant in the depth of sδ , the volume integration of (3.40) 

is reduced to the surface integrate: 

 

2 0
0

air air0
0 , ,

0

2

1p

m

kj j j
mS

j

I E E ds
j

ζ ζ ζ

ωμω μ σ
εκ ε σ
ωε

⎛ ⎞−⎜ ⎟
= ⎜ ⎟ ⋅

⎜ ⎟−⎜ ⎟
⎝ ⎠

∫∫  (3.41) 

By taking the limit of Iζ  as mσ  goes to infinity, the final expression for 

the contribution of the normal field component to the sensitivity integral of (3.5) 

is obtained as  

 2 air air
0 0 , ,

p

kj j j
S

I E E dsζ ζ ζκ ω μ ε= ⋅∫∫  (3.42) 

Hereafter, the superscript ‘air’ is omitted and ,kE ζ  and ,jE ζ denote the normal E-

field components at the surface of the metal. 

Using (3.22), and (3.42), the exact self-adjoint sensitivity expression for 

the shape parameters of finite-conductivity metallic structures is obtained as 

 , , 0 , , .
2

kj m
k j k j

n j k S

S j E E ds
p V V j τ τ ζ ζ

ω σ ε
ω

Ω

∂ ⎛ ⎞−
= ⋅ + ⋅⎜ ⎟∂ ⎝ ⎠

∫∫ E E   (3.43) 

With the use of (3.25), and (3.42), the exact self-adjoint sensitivity 

expression for shape parameters of PEC structures is obtained as 
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 ( )0 , , 0 , , .
2

kj s s
k j k j

n j k S

S j E E ds
p V V τ τ ζ ζ

ω μ ε
Ω

∂ −
= ⋅ + ⋅

∂ ∫∫ J J  (3.44) 

The sensitivity formula (3.44) can also be written as a function of the tangential 

magnetic field ,j τH  instead of the surface current density. This can be done 

through the use of the boundary condition, 

 , ,
ˆ ,s

j jζ= ×J Hτ τ  (3.45) 

where ζ̂  is the unit normal at the surface of the metal. The self-adjoint sensitivity 

expression then becomes 

 ( )0 , , 0 , , .
2

kj
j k k j

n j k S

S j E E ds
p V V τ τ ζ ζ

ω μ ε
Ω

∂ −
= ⋅ + ⋅

∂ ∫∫ H H  (3.46) 

A note should be made here about the field components in (3.46). As can 

be seen in Figure 3.1, the direction of the perturbation is assumed to be along ζ̂ , 

and 1̂τ  and 2̂τ  are tangential to the surface of perturbation. So, we need the 

normal E-field and the tangential H-field components associated with the 

perturbation face for the parameter pn. 

 

3.4 Implementation Example for Finite 

Conductivity Metallic Structures 

In this section, a two-section impedance-transformer example is presented 

to verify the new sensitivity formula (3.43) proposed for finite conductivity 

metallic structures. The material of the metal as set to copper with the value of 
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conductivity of 75.8 10  S/m× . The simulations are performed with the 

commercial finite-element solver, Ansoft HFSS [1]. It can provide the S-

parameters as well as the field solution at the surface of the perturbation faces. 

The field solution at the desired shape surfaces is exported using the post-

processing tool. Moreover, HFSS can provide reference sensitivity curves as it 

has a sensitivity-analysis capability. 

The proposed self-adjoint sensitivity analysis formula of (3.43) is 

implemented in MATLAB® [8]. The results are compared with the reference self-

adjoint sensitivities provided by HFSS. The reference plots are exact since the 

simulator is using the analytical derivatives of the FEM system matrix. 

The waveguide two-section impedance transformer [10] example is shown 

in Figure 3.3. The rectangular cross-sections of ports 1 and 2 are 36.4 10.2×  mm2 

and 36 7×  mm2, respectively. The nominal design parameter values of the two-

section impedance transformer are given in Table 3.1 

The waveguide is excited using wave ports with the dominant TE10 mode. 

The mesh convergence error for the S-parameters is set as 0.005. 

The proposed method is used to calculate the derivatives of 11S  and 21S

with respect to two shape parameters: the width w  and the height h  of the first 

transformer section in the frequency range from 5 to 7 GHz. Very fine mesh is 

imposed on the perturbation faces for the respective parameters, 1w  and 1h , to 

make the field solutions as accurate as possible. 

 



M.A.Sc. Thesis––M. Sadegh Dadash         Chapter 3           McMaster University––E&CE 

 

53 
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c

d
 

Figure 3.3  The two-section waveguide impedance transformer. The width w1 
and the height h1 of the first section are the parameters of interest. 

Table 3.1  Nominal design parameter values of the two-section impedance 
transformer. 

Parameter Value (mm) 

a 40.4 

b 20.2 

c 34.8 

d 5.1 

W1 36.4 

W2 36 

h1 10.2 

h2 7 
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Figure 3.4 to Figure 3.7 show the derivatives of the S11 with respect to the 

parameters w1 and h1 in which the integrations are done in the MATLAB®. Here, 

the agreement between the derivatives calculated by the proposed method and the 

reference curves is very good. 

The derivatives of S21 with respect to the parameters w1 and h1 calculated 

in the MATLAB® are shown in Figure 3.8 to Figure 3.11. The results for the 

parameter h1 show minor disagreement with the reference sensitivity curves. This 

disagreement can be explained with inaccuracies in the numerical field solution 

and the inaccuracy of the numerical integration over the perturbation face. 
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Figure 3.4 Sensitivity curves for the real part of 11S  with respect to 1w  in the 
impedance-transformer example. 

 

Figure 3.5 Sensitivity curves for the imaginary part of 11S  with respect to 1w  
in the impedance-transformer example. 
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Figure 3.6 Sensitivity curves for the real part of 11S  with respect to 1h  in the 
impedance-transformer example. 

 

Figure 3.7 Sensitivity curves for the imaginary part of 11S  with respect to 1h  
in the impedance-transformer example. 
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Figure 3.8 Sensitivity curves for the real part of 21S  with respect to 1w  in the 
impedance-transformer example. 

 

Figure 3.9 Sensitivity curves for the imaginary part of 21S  with respect to 1w  
in the impedance-transformer example. 
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Figure 3.10 Sensitivity curves for the real part of 21S  with respect to 1h  in the 
impedance-transformer example. 

 

Figure 3.11 Sensitivity curves for the imaginary part of 21S  with respect to 1h  
in the impedance-transformer example. 
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3.5 Implementation Examples for PEC Metallic 

Structures 

In this section, two examples are presented to verify the new sensitivity 

formula (3.46) proposed for PEC metallic structures. These include an H-plane 

waveguide filter and two-section impedance transformer in which PEC is set as 

the material for the metal. The simulations are performed with the commercial 

finite-element solver, Ansoft HFSS [1]. It can provide the S-parameters as well as 

the field solution at the surface of the perturbation faces. The field solution at the 

desired shape surfaces is exported using the post-processing tool. Moreover, the 

reference sensitivity curves are provided by the HFSS. 

3.5.1 Six-resonator H-plane Waveguide Filter 

The six-resonator H-plane filter [9] is shown in Figure 3.12. The 

rectangular waveguide is of width 2 34.8488a =  mm and height 15.7988b =  mm. 

The nominal parameter values of the this structure is given in Table 3.2. The six 

resonators are separated by seven septa of finite thickness 0.6223δ =  mm. The 

material of the metal is set as PEC. 

The waveguide is excited using wave ports in a way that only the 

dominant TE10 mode propagates. The mesh convergence error for the S-

parameters is set to 0.005. 
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Figure 3.12 H-plane waveguide filter. The structure is symmetric along the 
width of the waveguide. 

One design parameter of interest is the width of the four septa w3 located 

symmetrically about the mid-length of the waveguide. To obtain an accurate field 

solution, a very fine mesh is imposed on the perturbation faces of interest. The 

other design parameter of interest is d3 which determines the location of the four 

septa of width w3 [see Figure 3.12]. The proposed sensitivity formula is used to 

calculate the derivatives of 11S  and 21S  with respect to w3 and d3 in the frequency 

range from 4 to 7 GHz. 

The field solution is exported using the Field Calculator in the Post-

processing Toolbox of HFSS. This toolbox also allows to perform mathematical 

operations on the EM field quantities in the structure when only one port is  
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Table 3.2 Nominal parameter values of the H-plane waveguide filter. 

Parameter Value (mm) 

a 17.4244 

b 15.7988 

δ  0.62230 

w1 4.35610 

w2 5.60070 

w3 6.22300 

w4 6.22300 

d1 16.1798 

d2 16.1798 

d3 16.8021 

 

excited. This information of the S21, because it needs both the field solution of 

ports 1 and 2. Therefore, the integrations for sensitivity analysis of the S21 are 

done in the MATLAB®. 

Figure 3.13 to Figure 3.16 show the derivatives of the S11 with respect to 

parameters calculated in the Field Calculator of HFSS. While the agreement 

between the derivatives calculated by the proposed method and the reference 

curves calculated by HFSS is very good, there is a slight difference between them. 
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The same derivatives are shown in Figure 3.17 to Figure 3.22 in which the 

integrations are done in the MATLAB®. While the calculated 11 3/S w∂ ∂  shows 

better agreement with the reference sensitivity curves, there is some discrepancy 

for 11 3/S d∂ ∂  around the frequency of 4.5 GHz. This should be the effect of the 

imperfect sampling of the numerical field solution and the numerical integration. 

The derivatives of S21 with respect to parameters w3 and d3 calculated in 

MATLAB®, are shown in Figure 3.21 to Figure 3.24. The results show a very 

good agreement with the reference sensitivity curves. 

A very fine mesh is needed at the perturbation faces for the respective 

parameters to make the field solutions as accurate as possible. Without defining a 

fine mesh, the calculated sensitivities are very different from the reference plots. 
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Figure 3.13 Sensitivity curves for the real part of 11S  with respect to 3w  in the 
H-plane filter example, calculated in the Field Calculator of HFSS. 
 

 

Figure 3.14 Sensitivity curves for the imaginary part of 11S  with respect to 3w  
in the H-plane filter example, calculated in the Field Calculator of HFSS. 
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Figure 3.15 Sensitivity curves for the real part of 11S  with respect to 3d  in the 
H-plane filter example, calculated in the Field Calculator of HFSS. 
 

 

Figure 3.16 Sensitivity curves for the imaginary part of 11S  with respect to 3d  
in the H-plane filter example, calculated in the Field Calculator of HFSS. 
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Figure 3.17 Sensitivity curves for the real part of 11S  with respect to 3w  in the 
H-plane filter example. 
 

 
Figure 3.18 Sensitivity curves for the imaginary part of 11S  with respect to 3w  
in the H-plane filter example. 
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Figure 3.19 Sensitivity curves for the real part of 11S  with respect to 3d  in the 
H-plane filter example. 

 

Figure 3.20 Sensitivity curves for the imaginary part of 11S  with respect to 3d  
in the H-plane filter example. 
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Figure 3.21 Sensitivity curves for the real part of 21S  with respect to 3w  in the 
H-plane filter example. 
 

 

Figure 3.22 Sensitivity curves for the imaginary part of 21S  with respect to 3w  
in the H-plane filter example. 
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Figure 3.23 Sensitivity curves for the real part of 21S  with respect to 3d  in the 
H-plane filter example. 

 

Figure 3.24 Sensitivity curves for the imaginary part of 21S  with respect to 3d  
in the H-plane filter example. 
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3.5.2 Two-section Impedance Transformer 

The second example is a waveguide two-section impedance transformer 

[10] which is shown in Figure 3.3. Here the metal is set as PEC. 

The waveguide is excited using wave-ports with the dominant TE10 mode. 

The mesh convergence error for the S-parameters is set as 0.005. 

The proposed method is used to calculate the derivatives of 11S  and 21S

with respect to two shape parameters: the width w  and the height h  of the first 

transformer section in the frequency range from 5 to 7 GHz. Very fine mesh is 

imposed on the perturbation faces for the respective parameters, 1w  and 1h , to 

make the field solutions as accurate as possible. 

Figure 3.25 to Figure 3.28 show the derivatives of the S11 with respect to 

parameters w1 and h1 calculated in the Field Calculator of HFSS. The same 

derivatives are plotted in Figure 3.29 to Figure 3.32 in which the integrations are 

done in the MATLAB®. Here, the agreement between the derivatives calculated 

either in the Field Calculator of HFSS or in the MATLAB®, and the reference 

curves is very good. 

The derivatives of S21 with respect to parameters w1 and h1 calculated in 

the MATLAB®, are shown in Figure 3.33 to Figure 3.36. The results for 

parameter h1 shows some discrepancy with the reference sensitivity curves which 

should be the effect of numerical imperfect field sampling and integration. 
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Figure 3.25 Sensitivity curves for the real part of 11S  with respect to 1w  in the 
impedance-transformer example, calculated in the Field Calculator of HFSS. 

 

Figure 3.26 Sensitivity curves for the imaginary part of 11S  with respect to 1w  
in the impedance-transformer example, calculated in the Field Calculator of 
HFSS. 
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Figure 3.27 Sensitivity curves for the real part of 11S  with respect to 1h  in the 
impedance-transformer example, calculated in the Field Calculator of HFSS. 

 

Figure 3.28 Sensitivity curves for the imaginary part of 11S  with respect to 1h  
in the impedance-transformer example, calculated in the Field Calculator of 
HFSS. 
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Figure 3.29 Sensitivity curves for the real part of 11S  with respect to 1w  in the 
impedance-transformer example. 

 

Figure 3.30 Sensitivity curves for the imaginary part of 11S  with respect to 1w  
in the impedance-transformer example. 
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Figure 3.31 Sensitivity curves for the real part of 11S  with respect to 1h  in the 
impedance-transformer example. 

 

Figure 3.32 Sensitivity curves for the imaginary part of 11S  with respect to 1h  
in the impedance-transformer example. 
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Figure 3.33 Sensitivity curves for the real part of 21S  with respect to 1w  in the 
impedance-transformer example. 

 

Figure 3.34 Sensitivity curves for the imaginary part of 21S  with respect to 1w  
in the impedance-transformer example. 
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Figure 3.35 Sensitivity curves for the real part of 21S  with respect to 1h  in the 
impedance-transformer example. 

 

Figure 3.36 Sensitivity curves for the imaginary part of 21S  with respect to 1h  
in the impedance-transformer example. 
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Chapter 4 

SELF-ADJOINT SENSITIVITY 
ANALYSIS OF INFINITESIMALLY 
THIN METALLIC STRUCTURES 
 
4.1 Introduction 

Metallic sheet is a special case of the volumetric metallic structure which 

is infinitesimally thin. The shape has two dimensions, but the sensitivity 

calculations with respect to the designable parameters involve field solution in 

three dimensions. Similarly to the case of volumetric metallic structures, a theory 

should be developed for these kind of parameters. 

We start from the same formulation obtained for the volumetric metallic 

structures and then with the use of EM field singularity at the edge of metallic 

sheet, the new formulation would be developed. 

The singular behaviour of EM fields at the edge of metallic sheet is 

explained in section 4.2. In section 4.3, the theory for sensitivity analysis of 

infinitesimally thin metallic shape parameters will be explained. The final 
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formulation is validated in section 4.4 in the cylindrical waveguide filter example 

[1]. 

 

4.2 Field Singularity at the Edge of Metallic Sheet 

[2], [3] 

To understand the behaviour of the electromagnetic wave at, or around, 

the edge of a metallic sheet, the scattering problem of a two-dimensional (2-D) 

conducting wedge should be investigated first, as shown in Figure 4.1. The 

canonical problem of a 2-D conducting wedge can be used to represent locally 

(near the edge) the scattering of a metallic sheet by reducing the wedge angle, 2α, 

to zero. 

First, the modal solution for the scattering of the two EM polarizations 

TEz and TMz are explained. This solution helps to understand the behaviour of an 

arbitrary EM field since it is a superposition of these two polarizations. 

a) TEz Polarization 

For the TEz polarization, we can assume that the wedge is illuminated by 

an electric line source Ie , as shown in Figure 4.1. For the case of a plane wave 

excitation, this line source is placed very far from the structure which is done by 

setting ρ′  as infinity. The final field solutions in this case can be written as: 
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ŷ

x̂

2 (2 )nα π= −

ρ
ρ′

ϕ ϕ′

eI

ẑ

 

Figure 4.1 A two-dimensional wedge which is illuminated by an electric line 
source. ρ′  and ϕ′  determine the source location while ρ  and ϕ  show the 
observation location. n determines the wedge angle. 
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where 
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 (4.2) 

β is the propagation constant of the EM wave in vacuum, 0H  is the coefficient, 

which relates to the excitation source, and ( )pJ x  is the Bessel function of the first 

kind of order p, which is defined as 
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1 2
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+∞

=

−
=

+∑  (4.3) 

Here, we are interested in infinitesimally thin structures, so the wedge 

angle is set to zero by choosing the value of 2 for n. As it can be seen from (4.1) 

and (4.3), the only field components which are singular with respect to ρ are E t
ρ , 

and E t
ϕ . This singularity happens for the terms in the summation where 

0 / 1m n< <  , i.e., when n = 2, the only term which causes singularity is m = 1. 

Thus, only the terms with m = 1 exhibit singularity. This singularity can be 

written as, 

 1 1E , E .ρ ϕρ ρ
∝ ∝  (4.4) 

Note that, in the TEz polarization, Η z  is not singular. 

b) TMz Polarization 

Contrary to the TEz polarization, the wedge in this case is illuminated by a 

magnetic line source Im. For a plane wave excitation, the line source could be 
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placed in the far distance by setting ρ′  to infinity. The final field solution for this 

polarization is 
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 (4.5) 

where 0E  is the coefficient which relates to the excitation source. 

Similarly to the TEz polarization, only the two field components Η ρ  and 

Ηϕ  have singularity near the edge. They are proportional to ρ : 

 1 1Η , Η .ρ ϕρ ρ
∝ ∝  (4.6) 

4.3 Sensitivity Formulation for Infinitesimally 

Thin Metallic Structures 

The starting point is the sensitivity formula for the volumetric metallic 

shape parameters (3.46), explained completely in chapter 3. There, we need to 

perform a surface integration over a perturbation face, which collapses into a line  
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x̂

ŷ

ẑ
ρ̂ϕ̂

np

nρ ϕ

 

Figure 4.2 The metallic sheet can be assumed to have a metallic cylinder 
attached to its end. nρ  determines the radius of the cylinder. 

in the case of an infinitesimally thin structure. We can overcome this problem by 

a simple assumption that a metallic cylinder is connected to the end of the 

metallic sheet so that its axis coincides with the edge, as shown in Figure 4.2. By 

reducing the radius of the cylinder to zero, we obtain the infinitesimally thin 

structure. Thus, we can consider the asymptotic behavior of the field around the 

cylinder when its radius tends to zero. 

Furthermore, we can relate the parameter of interest form np  to nρ , the 

radius of the cylinder. This is true since a very small increase Δ  in each of these 

parameters has the same effect of increasing the length of the metallic sheet by .Δ  

Now that we are working with nρ , we can use the formulation for the volumetric 
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objects and assume that the tangential components of the H-field are in the ϕ̂  and 

ẑ  directions and the normal component of the E-field is in the ρ̂  direction. 

For the cylinder, the perturbation face is its outer surface cS . On this 

surface, the sensitivity formula can be written as 

 0
0 , , 0 , ,0

lim E E .
4 n

c

kj
k j k j n

n S

S j d dzτ τ ρ ρρ

ωμ μ ε ρ ϕ
ρ →

∂ − ⎡ ⎤= ⋅ + ⋅⎣ ⎦∂ ∫∫ H H  (4.7) 

Since H z  does not have singularity with respect to ρ , the limit of its integral on 

the vanishing surface of cS  is zero. So, only Hϕ  and Eρ  terms remain in (4.7): 

 0
0 , , 0 , ,0

lim H H E E .
4 n

c

kj
k j k j n

n S

S j d dzϕ ϕ ρ ρρ

ωμ μ ε ρ ϕ
ρ →

∂ − ⎡ ⎤= ⋅ + ⋅⎣ ⎦∂ ∫∫  (4.8) 

Using the singularity expressions in (4.4) and (4.6), the field solution on 

the metallic cylinder (at nρ ρ= ), can be related to the field sampled a distance d 

away from the surface of the cylinder in the air (at nρ ρ= + Δ ), as shown in 

Figure 4.3: 
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 (4.9) 

Substituting (4.9) in the surface integral in (4.8), we have the following two 

terms: 
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Figure 4.3 The field solutions are sampled a distance d away from the edge. 
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and, similarly, 

 
( ) ( )

2 , ,0

, ,

lim E E

E E .
n

c

c

k j n
S

k j
S

I d dz

d d d d dz

ρ ρρ

ρ ρ

ρ ϕ

ϕ

→
= ⋅

= ⋅

∫∫
∫∫

 (4.11) 

The final sensitivity formula for an infinitesimally thin metallic structures can 

thus be written as 
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 (4.12) 

This formula implies surface integration of the respective field components 

around the edge of the metallic sheet over a cylinder with radius d. 

4.4 Implementation Example for Infinitesimally 

Thin Metallic Structure 

The last example is a cylindrical waveguide filter [1][1], which is shown 

in Figure 4.4. The rectangular cross-sections of ports 1 and 2 are 36.4 10.2×  mm2 

and 36 7×  mm2, respectively. The material of the metal is set as PEC.  

The waveguide is excited using wave-ports in a way that only the 

dominant TE10 mode. The mesh convergence error for the S-parameters is set as 

0.005. 

The proposed method is used to calculate the derivatives of 11S  and 21S

with respect to four shape parameters of the aperture: oX , oZ , 2oX , and 2oZ , in 

the frequency range from 13 to 14 GHz. 

The expression in (4.12) is used to calculate the derivatives of S11 with 

respect to the design parameters. The integration is done around the edge on a 

cylindrical surface. Since the cylindrical integration is difficult to implement in 

the Field Calculator of HFSS, all the calculations are done outside in the 

MATLAB®. Very fine mesh is created around the edges of the middle aperture as  
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Figure 4.4 The cylindrical waveguide filter. The parameters of interest are Xo, 
Xo2, Zo, and Zo2. Very fine mesh is created around the edges of the structure. 

shown in Figure 4.4. The field components are exported using the Field 

Calculator export capability.  

The derivative of S11 with respect to oX , 2oX , oZ , and 2oZ  are shown in 

Figure 4.5 to Figure 4.12. The derivative results calculated with the proposed 

method are in a very good agreement with the reference sensitivity curves 

calculated in the HFSS. 

Since the structure is symmetric and the place of field sampling is in the 

equal distance from port 1 and port 2, the derivatives of S21 with respect to design  
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Table 4.1 Nominal design parameter values of the cylindrical waveguide 
filter. 

Parameter Value (mm) 

a 1.905 

b 0.9525 

Rc 1.3589 

Xo 0.1651 

Xo2 0.9144 

Zo 0.9144 

Zo2 0.1651 

 

parameters of interest are the same as the derivatives of S11. Therefore, there is no 

need to calculate the sensitivity of the S21. 

Figure 4.5 to Figure 4.12 show the derivative of S11 with respect to design 

parameters Xo, Xo2, Zo and Zo2 respectively. The results show a good agreement 

between the obtained derivatives using the proposed method and the reference 

sensitivity curves of the HFSS. 
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Figure 4.5 Sensitivity curves for the real part of 11S  with respect to oX  in the 
cylindrical waveguide filter example. 
 

 

Figure 4.6 Sensitivity curves for the imaginary part of 11S  with respect to oX  
in the cylindrical waveguide filter example. 
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Figure 4.7 Sensitivity curves for the real part of 11S  with respect to 2oX  in the 
cylindrical waveguide filter example. 
 

 

Figure 4.8 Sensitivity curves for the imaginary part of 11S  with respect to 

2oX  in the cylindrical waveguide filter example. 
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Figure 4.9 Sensitivity curves for the real part of 11S  with respect to oZ  in the 
cylindrical waveguide filter example. 
 

 

Figure 4.10 Sensitivity curves for the imaginary part of 11S  with respect to oZ  
in the cylindrical waveguide filter example. 
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Figure 4.11 Sensitivity curves for the real part of 11S  with respect to 2oZ  in the 
cylindrical waveguide filter example. 
 

 

Figure 4.12 Sensitivity curves for the imaginary part of 11S  with respect to 2oZ  
in the cylindrical waveguide filter example. 
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Chapter 5  

CONCLUSION 
 

In this thesis, a new analytical self-adjoint sensitivity analysis (SASA) 

formulation to compute the S-parameter Jacobian for metallic shape parameters is 

proposed. This method is independent of the numerical full-wave analysis and the 

respective system matrix. The theory works for the both volumetric and 

infinitesimally thin metallic shapes. However, the latter one is in the first stage of 

development and needs further investigation. 

The proposed method needs only the field solution at the surface or 

around the edges of the metallic structure to calculate the gradients of the  

S-parameters with respect to all designable parameters. The advantage of this 

method over the previous method of FDFD-SASA is the fact that it does not 

employ any approximations in the field solution of the adjoint problem. It 

operates as a post-process for commercial simulators based on volumetric partial 

differential equations (PDE). 

This method opens the possibility for exact sensitivity analysis with all 
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electromagnetic high-frequency simulators whose system matrices are not 

differentiable with respect to shape parameters, e.g., the FDTD method and the 

MoM. 

First, we briefly explained the methodology of FDFD-SASA. Since, the 

focus of this thesis is on the metallic shape parameters, the implementation of the 

FDFD-SASA method for metallic shape parameters is reviewed. 

Then, we investigated our new frequency-domain sensitivity analysis 

approach for metallic shapes. It has the same high efficiency as the SASA but 

eliminates the requirement to access the system matrix generated by the simulator. 

The proposed method is validated for three microwave examples including an H-

plane waveguide filter, a two-section impedance transformer, and a cylindrical 

waveguide filter. The field solutions are exported from the EM simulator Ansoft 

HFSS [1] are used in MATLAB® [2] to calculate the sensitivity information. The 

calculated derivatives are in a very good agreement with the reference sensitivity 

curves. 

From the experience and knowledge gained in the above work, the 

following topics for further research are suggested. 

1) Improving the theory of the exact sensitivity analysis for 

infinitesimally thin metallic structures. 

2) Developing the theory of the exact sensitivity analysis for dielectric 

shape parameters. 

3) Implementation of the above with various full-wave EM simulators. 
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