Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11092
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBalakrishnan, Narayanaswamyen_US
dc.contributor.authorMayorov, Kirillen_US
dc.date.accessioned2014-06-18T16:53:34Z-
dc.date.available2014-06-18T16:53:34Z-
dc.date.created2011-08-30en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6088en_US
dc.identifier.other7114en_US
dc.identifier.other2204381en_US
dc.identifier.urihttp://hdl.handle.net/11375/11092-
dc.description.abstract<p>In this thesis we study the Birnbaum-Saunders autoregressive conditional du- ration (BS-ACD) model. As opposed to the standard ACD model, formulated in terms of the conditional mean duration, the BS-ACD model specifies the time-varying model dynamics in terms of the conditional median duration. By means of Monte Carlo simulations, we examine the asymptotic behaviour of the maximum likelihood estimators. We then present a study of numerical efficacy of some optimization algorithms in relation to the BS-ACD model. On a practical side, we fit the BS-ACD model to samples for six securities listed on the New York Stock Exchange.</p>en_US
dc.subjecthigh-frequency dataen_US
dc.subjectACD modelen_US
dc.subjectBirnbaum-Saunders distributionen_US
dc.subjectStatistics and Probabilityen_US
dc.subjectStatistics and Probabilityen_US
dc.titleMODELLING TRADE DURATIONS WITH THE BIRNBAUM-SAUNDERS AUTOREGRESSIVE MODELen_US
dc.typethesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.1 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue