Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11075
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCapson, Daviden_US
dc.contributor.advisorSpence, Allanen_US
dc.contributor.advisorNicola Nicolici, Shahram Shiranien_US
dc.contributor.authorKinsner, Michaelen_US
dc.date.accessioned2014-06-18T16:53:31Z-
dc.date.available2014-06-18T16:53:31Z-
dc.date.created2011-08-26en_US
dc.date.issued2011-10en_US
dc.identifier.otheropendissertations/6072en_US
dc.identifier.other7088en_US
dc.identifier.other2195646en_US
dc.identifier.urihttp://hdl.handle.net/11375/11075-
dc.description.abstract<p>Accurate measurement of surface grids through imaging enables a variety of applications. One important example can be found in automotive manufacturing, where deformed sheet metal surface strains must be validated in safety critical regions, and rapidly measured to correct process variations. This thesis advances machine vision techniques in the context of close-range surface imaging and measurement. Sheet metal surface strain analysis provides a motivating application, but the contributions may be directly transferred to a variety of other machine vision applications where reliable, accurate measurements are required in adverse imaging conditions.</p> <p>Close-range imaging in practical environments presents a number of challenges, primarily relating to depth of field blur and the regional field of view. This thesis contributes to three major components required for close-range optically-based surface measurement. First, an approach for grid line intersection measurement in the presence of significant and varying depth-of-field blur is considered, with a solution based on scale-space ridge extraction. An architecture for acceleration of the computationally intensive algorithm is then developed, and implemented using state of the art graphics (GPU) hardware. Acceleration to camera video frame rates is achieved.</p> <p>The second contribution is a novel approach for interframe motion tracking of uniform gridded surfaces. The algorithm exploits topological structure of the imaged grid pattern, thereby reducing dimensionality of the interframe tracking problem. Intrinsic fiducial measurement is proposed to avoid the need for explicit feature detectors that locate fiducials in the presence of varying size and blur. Close-range interframe tracking is demonstrated, and statistics are presented on the registration objective function.</p> <p>Finally, an approach is considered for camera and hand-eye calibration of a monocular camera mounted to the tool point of a coordinate measuring machine (CMM). Pre-processing algorithms are contributed to prepare close-range gridded image data for the calibration process. Ideal model coordinate points are coherently assigned to detected grid features across video sequences, and grid approximation is performed for highly blurred image frames where reliable features have not been extracted.</p> <p>The contributions of this thesis make significant progress toward enabling video frame rate, close-range, computer vision-based sheet metal surface strain analysis, and other applications where challenging image conditions impede measurement.</p>en_US
dc.subjectComputer visionen_US
dc.subjectmachine visionen_US
dc.subjectgrid measurementen_US
dc.subjectgrid trackingen_US
dc.subjectOther Computer Engineeringen_US
dc.subjectOther Computer Engineeringen_US
dc.titleClose-range Machine Vision for Gridded Surface Measurementen_US
dc.typethesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
17.36 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue