
Close-range Machine Vision for

Gridded Surface Measurement

CLOSE-RANGE MACHINE VISION FOR

GRIDDED SURFACE MEASUREMENT

BY

MICHAEL KINSNER, B.Eng.Mgmt.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Michael Kinsner, August 2011

All Rights Reserved

Doctor of Philosophy (2011) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Close-range Machine Vision for

Gridded Surface Measurement

AUTHOR: Michael Kinsner

B.Eng.Mgmt., (Computer Engineering and Manage-

ment)

McMaster University, Hamilton,Canada

SUPERVISOR: Dr. David Capson and Dr. Allan Spence

NUMBER OF PAGES: xx, 199

ii

To my parents, for their guidance,

support, and love.

Abstract

Accurate measurement of surface grids through imaging enables a variety of appli-

cations. One important example can be found in automotive manufacturing, where

deformed sheet metal surface strains must be validated in safety critical regions, and

rapidly measured to correct process variations. This thesis advances machine vision

techniques in the context of close-range surface imaging and measurement. Sheet

metal surface strain analysis provides a motivating application, but the contributions

may be directly transferred to a variety of other machine vision applications where

reliable, accurate measurements are required in adverse imaging conditions.

Close-range imaging in practical environments presents a number of challenges,

primarily relating to depth of field blur and the regional field of view. This thesis

contributes to three major components required for close-range optically-based sur-

face measurement. First, an approach for grid line intersection measurement in the

presence of significant and varying depth-of-field blur is considered, with a solution

based on scale-space ridge extraction. An architecture for acceleration of the compu-

tationally intensive algorithm is then developed, and implemented using state of the

art graphics (GPU) hardware. Acceleration to camera video frame rates is achieved.

The second contribution is a novel approach for interframe motion tracking of uni-

form gridded surfaces. The algorithm exploits topological structure of the imaged grid

iv

pattern, thereby reducing dimensionality of the interframe tracking problem. Intrin-

sic fiducial measurement is proposed to avoid the need for explicit feature detectors

that locate fiducials in the presence of varying size and blur. Close-range interframe

tracking is demonstrated, and statistics are presented on the registration objective

function.

Finally, an approach is considered for camera and hand-eye calibration of a monoc-

ular camera mounted to the tool point of a coordinate measuring machine (CMM).

Pre-processing algorithms are contributed to prepare close-range gridded image data

for the calibration process. Ideal model coordinate points are coherently assigned to

detected grid features across video sequences, and grid approximation is performed

for highly blurred image frames where reliable features have not been extracted.

The contributions of this thesis make significant progress toward enabling video

frame rate, close-range, computer vision-based sheet metal surface strain analysis,

and other applications where challenging image conditions impede measurement.

v

Acknowledgements

I would like to thank my supervisors, Dr. David Capson and Dr. Allan Spence, for

their extensive guidance, support, knowledge, and availability during this research

project. The many meetings and discussions taken out of their busy schedules have

proven invaluable to both the direction and implementation of this work.

I would also like to thank the members of my supervisory committee, Dr. Nicola Nicol-

ici and Dr. Shahram Shirani for their comments and support. Thanks go out to my

fellow graduate students, both past and present, in the Computer Vision and De-

sign/Manufacturing Systems laboratories.

Financial support is gratefully acknowledged from the Natural Sciences and En-

gineering Research Council of Canada (NSERC), Shared Hierarchical Academic Re-

search Computing Network (SHARCNET), and Ontario Graduate Scholarships (OGS).

I would like to thank Coral and the Browne family for their support and kindness

over the years, and for putting up with my unusual work hours. Finally, I would like

to thank my parents and family for their unending support and guidance though my

studies and also throughout life. I wouldn’t be where I am without them.

vi

Contents

Abstract iv

Acknowledgements vi

List of Acronyms xvii

List of Mathematical Symbols xviii

1 Introduction 1

1.1 Motivation for this Work . 1

1.2 Existing Approaches . 3

1.2.1 Circle Grid Analysis . 3

1.2.2 Laser Scanner Approaches . 4

1.2.3 Gantry CMM Optical Approach 5

1.2.4 Commercial Systems . 6

1.3 Current Limitations . 7

1.4 Thesis Objectives . 7

1.5 Contributions of this Thesis . 8

1.6 Thesis Organization . 9

vii

2 Background and System Design 11

2.1 Surface Strain Analysis . 11

2.1.1 Strain Computation . 11

2.1.2 Surface Strain from Three-dimensional Reconstruction 14

2.1.3 Feature Grid Scaling . 14

2.2 Close-range Optical Computer Vision 16

2.2.1 Review of Pinhole Camera Imaging Model 18

2.2.2 Depth of Field . 20

2.2.3 Multiple View Triangulation 23

2.2.4 Surface Strain Error and Imaging Distance 25

2.3 Monocular Vision using Coordinate Measuring Machine 32

2.3.1 CMM Details . 33

2.3.2 Camera Details . 35

2.3.3 Camera Trajectory Constraints 36

2.3.4 Camera Synchronization . 37

2.3.5 System Data Flows . 38

2.4 Summary of this Chapter . 40

3 Grid Line Intersection Measurement 41

3.1 Existing Work . 43

3.2 Feature Detectors for Line-grid Measurement 44

3.2.1 Edge-based . 45

3.2.2 Ridge-based . 49

3.2.3 Corner-based . 51

3.2.4 Junction-based . 53

viii

3.2.5 Thresholding and Skeletonization 55

3.3 Scale-space . 55

3.3.1 Introduction . 55

3.3.2 Feature Detection . 58

3.3.3 Scale-space Ridge Detection 59

3.3.4 Computational Complexity . 64

3.4 Summary of this Chapter . 66

4 GPGPU Accelerated Grid Line Intersection Measurement 67

4.1 GPGPU . 67

4.1.1 GF100 Architecture . 69

4.1.2 Applicability of GPGPU . 77

4.2 Parallel Framework and Implementation 81

4.2.1 Algorithm Sequencing and Flow 81

4.2.2 GPGPU Processing . 82

4.2.3 Ridge Linking Kernel . 90

4.2.4 CPU Post-processing . 94

4.3 Parabola Fitting and Intersection Estimation 95

4.4 Results . 98

4.4.1 Test Platform . 99

4.4.2 Timing and Resource Utilization Results 99

4.4.3 Accuracy Results . 101

4.4.4 Experimental Video Sequence Results 105

4.4.5 Discussion . 107

4.5 Summary of this Chapter . 109

ix

5 Topological Interframe Grid Tracking 110

5.1 Interframe Tracking Using Fiducials 113

5.1.1 Explicit Fiducial Tracking . 113

5.1.2 Implicit Fiducial Tracking . 114

5.2 Proposed New Interframe Tracking Method 114

5.2.1 Thresholding . 114

5.2.2 Morphological Cleanup . 116

5.2.3 Connected Component Labelling 118

5.2.4 Metric Computation . 118

5.2.5 Delaunay Triangulation . 121

5.2.6 Quadrilateral Formation . 122

5.2.7 Grid Axis Alignment . 129

5.2.8 Topological Structure Formation and Filtering 129

5.2.9 Geometric Filtering . 132

5.3 Interframe registration . 132

5.3.1 Optimization Objective Function 132

5.3.2 Interframe Transform Computation 137

5.4 Experimental results . 138

5.5 Summary of this Chapter . 139

6 Calibration 140

6.1 Camera Calibration . 140

6.1.1 Calibration Methods . 140

6.1.2 Comparison of Calibration Techniques 144

6.1.3 Accuracy of Calibration Patterns 146

x

6.1.4 Choice of Camera Calibration Technique 148

6.1.5 Hand-eye Calibration . 148

6.2 Pre-processing for Camera Calibration 149

6.2.1 Model Grid Coordinate Assignment 150

6.2.2 Hough Approximation for Strongly Blurred Frames 155

6.3 Summary of this Chapter . 158

7 Conclusions 160

7.1 Future Work . 162

A POV-Ray Scripts for Synthetic Grid Sequence 164

A.1 GridGen.ini . 164

A.2 run1.pov . 164

B Derivation of Zhang Calibration 169

B.1 Constraints . 169

B.2 Analytic Initialization of Solution . 172

B.3 Homography-based Filtering . 177

B.4 Non-linear Optimization . 177

B.5 Calibration Parameter Scaling . 179

xi

List of Tables

1.1 Comparison of commercial optical strain analysis systems. 7

2.1 CMM Arm Specifications . 35

2.2 Camera Specifications . 35

3.1 Convolution Operation Totals . 65

4.2 GPU Memory Summary. 76

4.3 Conventions used in interpolation cube intersection fingerprint 89

4.4 Conventions used in Border Summary Data 93

4.5 NVIDIA GTX480 Details . 99

4.6 Kernel Execution Time (single frame) 99

4.7 Kernel Block Efficiency . 100

4.8 Total Resource Utilization . 101

4.9 Synthetic image grid measurement errors. 103

5.1 Interframe tracking - experimental results. 138

6.1 Implemented Hough Parameters . 156

B.1 Calibration parameter scaling parameters 179

xii

List of Figures

1.1 Sheet metal deformation. 3

1.2 Laser scanner mounted to CMM. 5

2.1 Surface strain computation geometry. 12

2.2 Forming limit diagram. 13

2.3 Sample gridded part images. 15

2.4 Three dimensional view of pinhole camera imaging a world point X. . 19

2.5 Depth of field geometry. 21

2.6 Circle of confusion limits. 22

2.7 Variation in depth of field with varying focal distance and f-stop. . . . 23

2.8 Triangulation geometry. 24

2.9 Triangulation uncertainty based on vergence angle. 25

2.10 Geometry of camera triangulation simulation. 26

2.11 Histogram of simulated triangulation error (αv = 45◦). 27

2.12 Monte Carlo simulation results (αv = 90◦). 28

2.13 Monte Carlo simulation results (αv = 45◦). 29

2.14 Monte Carlo simulation results for varying αv. 30

2.15 Scanning automotive heat shield surface using single camera mounted

to FARO arm. 33

xiii

2.16 Scanning automotive heat shield surface using single camera mounted

to FARO arm. 34

2.17 Synchronization and data flows between the controlling computer, FARO

arm, and camera. 38

2.18 Calibration data flow with high level processing steps (dotted box in-

dicates GPU accelerated component). 39

2.19 Part processing data flow with high level processing steps (dotted box

indicates GPU accelerated component). 39

3.1 Sample gridded part images. 42

3.2 Canny edge detection results on two regions of typical camera images,

showing examples of in focus and blurred imaging. 46

3.3 Intersection estimation from line edges. 48

3.4 Ridge interpretation of image intensity. 50

3.5 Harris corner detector output. 52

3.6 Sample junction detector output. 54

3.7 Sample scale-space organization. 60

3.8 Sample blocks of interpolating cubes with ridge segments. 61

3.9 Interpolating cube illustration. 62

3.10 Ridge extraction stage output. 63

4.11 Block diagram of the NVIDIA GF100 Multiprocessor. 71

4.12 Logical thread organization. 72

4.13 Inter-thread data sharing hierarchy in NVIDIA GF100 architecture. . 74

4.14 NVIDIA GF100 memory hierarchy from perspective of a single thread. 75

4.15 CPU/GPU work division. 81

xiv

4.16 GPU convolution workflow. 84

4.17 Horizontal kernel on image row. 85

4.18 GPU-side ridge extraction flow. 86

4.19 Metric isosurface intersection kernel. 90

4.20 Sample ridge detection output. 91

4.21 Linker kernel data storage conventions. 93

4.22 Raw ridges extracted from a portion of an image. 95

4.23 Sample synthetic images. 102

4.24 Synthetic sequence results - error plot. 104

4.25 Intersection measurement error distribution. 105

4.26 Synthetic video sequence intersection output. 106

4.27 Captured video sequence intersection output. 108

5.1 Sample interframe motion vectors. 111

5.2 Topological tracking - algorithm flow. 115

5.3 Sample images using the Shafait thresholding algorithm. 117

5.4 Morphological processing - example results. 119

5.5 Typical connected component with fiducial. Fill and convex hull shown.120

5.6 Connected component with grid defect. 121

5.7 Histogram of metric values. 122

5.8 Thresholded grid image with connected component centroids overlaid. 123

5.9 Long edge pruning. 124

5.10 Simulation parameters for long edge assumption in grid unit matching. 125

5.11 Critical camera viewing angle beyond which grid unit Delaunay diag-

onal is shorter than another edge. 125

xv

5.12 Long edge test - sample triangulations. 126

5.13 Delaunay angle test - sample triangulations. 127

5.14 Critical camera viewing angle beyond which Delaunay edges cease to

conform to the true grid geometry. 128

5.15 Vertex ordering relative to principal grid directions. 130

5.16 Sample topology output data. 133

5.17 Sample topology data. 134

5.18 Sample topology plot before and after filtering. 135

5.19 Optimization objective function plot for typical interframe motion. . . 136

5.20 Objective function side view for a typical frame. 137

5.21 Sample interframe motion flow field. 139

6.1 Model grid assignment. 152

6.2 Sample model grid coordinates assigned to detected feature points. . 153

6.3 Distance function for k-means clustering of line angles. 158

6.4 Sample Hough and k-means approximation output. 159

6.5 Sample Hough and k-means approximation output with outliers. . . . 159

xvi

List of Acronyms

3D Three Dimensional
CAD Computer Aided Design
CCD Charge Coupled Device
CGA Circle Grid Analysis
CMM Coordinate Measuring Machine
CMOS Complimentary Metal Oxide Semiconductor
CoC Circle of Confusion
CUDA Compute Unified Device Architecture
DLT Direct Linear Transform
DOF Depth of Field
FEA Finite Element Analysis
FLD Forming Limit Diagram
FLOPS Floating Point Operations Per Second
FMA Fused Multiply-Add
FOV Field of View
GPGPU General Purpose Graphics Processing Unit
GPIO General Purpose Input Output
GPU Graphics Processing Unit
HPC High Performance Computing
LM Levenberg-Marquardt
POV-Ray Persistence of Vision Raytracer
RAC Radial Alignment Constraint
RANSAC Random Sample Concensus
SAD Sum of Absolute Differences
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
SSD Sum of Squared Differences
SVD Singular Value Decomposition

xvii

List of Mathematical Symbols

α Horizontal camera imaging scale factor (pinhole camera model)
αn Camera angle from surface normal in simulation experiments
αv Camera vergence angle in simulation experiments
β Vertical camera imaging scale factor (pinhole camera model)
βn Target plane rotation angle in simulation experiments
γ Camera imaging skew factor between axes (pinhole camera model)
ε1 Major surface strain
ε2 Minor surface strain
ε3 Thickness strain
λ1,2 Eigenvalues of a 2× 2 matrix
λ Scaling factor in camera calibration
ν Calibration grid aspect ratio
κ Calibration grid scaling factor
σk
i Tracking metric ratio for connected component i in frame k

σk
(x,y) Tracking metric ratio for connected component at (x, y) in the topo-

logical structure (frame k)
θ Rotation angle between image and parabola coordinates
A Camera intrinsic calibration matrix in Zhang calibration
B Parameter matrix in Zhang calibration
b Parameter vector in Zhang calibration
Cθ cos(θ)
c Circle of confusion diameter
ci Parabola coefficients
D1,D2 Grid principal direction vectors in model coordinate assignment
d Lens diameter
dc Close DOF distance limit
df Far DOF distance limit
dk Distance metric for k-means clustering

xviii

E Essential matrix from epipolar geometry
F Linear mapping matrix for strain calculation
f Camera focal length
F Fundamental matrix from epipolar geometry
H Homography matrix
hk k-th column of homography matrix
Ij Image coordinates of a detected feature during model assignment
K Camera intrinsic calibration matrix
k1 First radial distortion coefficient
k2 Second radial distortion coefficient
L(x, y; t) Scale-space representation at pixel (x,y), scale level t

M̃ Homogeneous world point in Zhang calibration
m̃ Homogeneous image point in Zhang calibration
Mi Model grid coordinate assigned to an image feature
N Camera aperture F-stop number
nthresh Number of active pixels in thresholded connected component
nfilled Number of active pixels in filled connected component
Pi Parabola function
R Rotation matrix from world to camera coordinate system
r Computational unrolling factor
rI Horizontal image coordinate of distortion centre
rJ Vertical image coordinate of distortion centre
ri i-th column of rotation matrix
Sθ sin(θ)
s Camera lens to object distance
sc Arbitrary scaling factor in camera calibration development
se Morphological structuring element
t Scale-space scale parameter (filter variance)
t Translation vector from world to camera coordinate system
u0 Camera imaging principal point in horizontal pixels
uc Horizontal centre of radial distortion in pixels
ud Distorted horizontal image coordinate

xix

uu Undistorted horizontal image coordinate
u Image coordinate in horizontal pixels
Vij Constraint term in Zhang calibration
V Camera lens to image plane distance
VC Close lens to focus point distance
VF Far lens to focus point distance
v0 Camera imaging principal point in vertical pixels
vc Vertical centre of radial distortion in pixels
vd Distorted vertical image coordinate
vu Undistorted vertical image coordinate
v Image coordinate in vertical pixels

X̃ World point in homogeneous coordinates
x̃ Image point in homogeneous coordinates
Xc Parabola vertex in horizontal image coordinates
xc Parabola vertex in horizontal local coordinates
xp Local horizontal basis for parabola fitting
Yc Parabola vertex in vertical image coordinates
yc Parabola vertex in vertical local coordinates
yp Local vertical basis for parabola fitting

xx

Chapter 1

Introduction

The content of this thesis pertains to close-range machine vision, with algorithms

and techniques that enable surface measurement in important real world applica-

tions including, for example, automotive manufacturing, aerospace manufacturing,

and others where precision and processing speed are imperative. This chapter be-

gins by describing one motivating application for the work to set the context for the

machine vision algorithms that are subsequently developed. The chapter then sum-

marizes the thesis objectives and its contributions, and provides an overview of the

remaining chapters.

1.1 Motivation for this Work

Automotive manufacturing is a major industry throughout the world, and is a sig-

nificant driver of the economy in many geographic regions. A trend apparent in the

automotive industry has been a move towards lighter weight vehicles, motivated by

the need to reduce emissions to meet environmental standards, and the desire to

provide longer run times from battery equipped hybrid and electric cars. Significant

research is required and currently being devoted to the challenges imposed by light

weight vehicle structures.

Sheet metal stamping processes are a major activity in automotive production,

and are used to form components of the exterior body from flat sheet metal stock. The

desire for lighter weight assemblies has reduced the mechanical redundancy in vehicle

1

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

structures, tightening the acceptable limits on forming stresses during production.

When sheet metal is stamped into the desired shape within a die, the part must

have the correct three dimensional geometry for assembly, and must also adhere to

the material “forming limits” (described in Chapter 2) to ensure strength. If stressed

beyond the forming limits, parts may wrinkle, causing complications during assembly

and leading to rust from water and salt retention. Overstress may also manifest

as material thinning, leading to in-service failures, and a negative impact on crash

worthiness of the vehicle. In extreme cases, overstress leads to fracture and tearing

of the material, although these failures can often be detected through inspection.

With low weight design increasing dependence on the body as a critical element of

structural integrity, sheet metal strain analysis in industrial environments has become

significant from a safety standpoint.

In the context of this thesis, sheet metal surface strain measurement is required

in three specific instances. The first is industrial production, where adjustments

are occasionally required to bring a manufacturing process or production line back

under control. Such a situation occurs, for example, when a new batch of metal is

introduced into production. Slight variations in properties between batches may cause

the stamping dies to produce parts that are out of geometric tolerance. Adjustments

made to the stamping process must correct the output geometry without exceeding

test strain limits for the batch of metal, requiring strain to be measured during

iterative adjustment (or to validate finite element based corrections).

A second need for surface strain measurement is part design. Computer Aided

Design (CAD) systems for mechanical engineering can model and predict surface

strains in metal parts to be produced, but feedback from test samples of the metal to

be used is often required to fine tune the Finite Element Analysis (FEA) modelling.

Such feedback is especially important for safety critical parts that are formed with

significant strains, such as in aerospace design.

A third need for surface strain measurement is in forming research, where mea-

surement is required to validate strain models, especially when new materials are

being developed. Figures 1.1(a) and 1.1(b) show a square sheet metal sample be-

ing deformed to measure its material properties. The specialty forming machine is

designed to measure metal batch properties prior to manufacturing.

2

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 1.1: (a) Flat sheet metal sample before deformation; (b) Sheet metal sample
deformed into a dome to measure material properties.

Three dimensional reconstruction of part surfaces is significant during design and

production of a die that will stretch sheet metal into a formed part. As pressure is

removed from the die, elastic deformation in the sheet metal releases and the part

changes shape, a process known as “springback”. Measurement of part geometry

is required during die testing to ensure that the final product is within required

geometric tolerance.

The typical approach to measure surface strain during production is to place mark-

ers, such as ovals or line grids, on the metal surface before deformation. The location

(or shape) of these markers is either known or measured. After deformation the

markers are measured, and by monitoring the relative movement and/or distortion,

stretching or compression of the metal can be inferred.

1.2 Existing Approaches

1.2.1 Circle Grid Analysis

A technique commonly used to measure forming surface strains is known as Circle

Grid Analysis (CGA), and involves placing circles in a regular grid pattern on the flat

sheet metal blank (before deformation). The circles are typically placed on the metal

though etching or printing. As the metal is stamped into shape and stretches, the

3

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

circles are deformed into ovals. A technician then compares the shape and size of the

distorted ovals with a reference sheet, which gives the strain values associated with

the observed deformation. This technique is common because it is simple, but the re-

sults are dependent on the skill and care of the technician performing oval matching,

and significant time is required to manually compare and register the features. Grid

spacing tends to be relatively large for practical measurement, leading to a coarse

spatial resolution in the strain values. Even with an automated or photogrammetric

approach to measuring the deformation, the resolution remains relatively coarse be-

cause of the oval size needed for reliable detection. This technique is useful during

lab analysis of small sheet metal samples to determine batch properties, but is not

practical for online analysis of failed production parts. As a further disadvantage,

CGA does not allow non-proportional deformation to be detected [145].

1.2.2 Laser Scanner Approaches

Laser scanner systems on the market produce three dimensional models of parts, but

because sheet metal surfaces are typically featureless, strain information cannot be

inferred. Markers can be placed on the metal prior to deformation, but laser scanners

are typically designed to generate model surface geometry only, and not to detect

coloured or intensity-based features. Figure 1.2 shows a gantry CMM (Coordinate

Measurement Machine) with an attached laser scanner measuring the surface geom-

etry of a sample dome. Past work to perform CGA analysis using intensity data

returned by an experimental laser scanner was described in a Ph.D. thesis by Chan

[16, 17, 18].

Mobile and hand-held laser scanners often use rigid markers such as reflective

dot stickers placed manually on the part to simplify tracking of the laser scanner

motion, thereby simplifying point cloud registration. Although the markers are rigid

on the surface and therefore move during material stretching, increasing the density

for strain measurement is not practical.

In the situation where surface intensity information is provided by a laser scan-

ner, the data becomes similar to that of a camera, but with three-dimensional point

information embedded. Extracting surface features from the intensity data requires

computer vision-like techniques, but on a non-uniform point grid as opposed to a

4

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 1.2: Gantry CMM-mounted laser scanner measuring surface geometry of metal
dome.

uniform image sensor.

1.2.3 Gantry CMM Optical Approach

A Master’s thesis by Mitchell [106] explored the idea of using stereoscopic cameras

mounted to a gantry CMM to measure gridded points on a deformed sheet metal sur-

face [52, 147]. Using position and pose information from the CMM at multiple viewing

locations and angles, a three dimensional model of the part could be generated. The

thesis proved the proposed concept, but is impractical for use in an industrial envi-

ronment for two reasons. First, a gantry CMM is an expensive and immobile device,

and has a fixed size work area, typically much smaller than parts produced during au-

tomotive sheet metal stamping processes. Second, the CMM must be programmed or

manually driven to place the stereoscopic cameras at positions around the part such

that the entire surface is reconstructed. The cameras must be properly focussed, so

manual control of the CMM would typically be required. Either programming or

manually driving the gantry device is time consuming, and leads to impracticality in

real environments for online process correction.

5

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Gantry CMM-mounted cameras were also considered for three dimensional part

reconstruction by Aguilar et al. [2], but marker measurement for surface deformation

was not considered.

1.2.4 Commercial Systems

Two commercial optical strain measurement systems are available from companies in

Germany. They are compared with the approach taken by this thesis at the end of

Section 2.2.4. Key features of the systems are summarized in Table 1.1.

GOM mbH

A commercial offering by GOM mbH provides an optical approach for strain deter-

mination through their ARGUS system [49]. Dots or a random speckle patterns are

placed on a part surface prior to deformation, and are imaged on the deformed part

using a single camera. Multiple snapshots are taken with the camera, and uniquely

coded registration cubes may be placed around the object [49] to simplify multiple-

view point correspondence. Deformation of the dot or speckle pattern is interpreted

as strain information, which may be overlaid on a CAD model of the part. Dot

spacing is on the order of 1-5mm [137].

Correlation of speckle pattern regions, as available through the GOM system, is

described by Vacher et al. [168]. An application of these patterns for video imaging

during material property testing is presented in [64].

ViALUX GmbH

A second commercial offering is the AutoGrid system, produced by ViALUX GmbH.

It uses four CCD cameras mounted to a frame, which simultaneously image a part, and

line-based grids are used to provide surface features. The system applied to generation

of forming limit diagrams is described in [77]. Two models of the AutoGrid system

are available, one for stationary mounting on a tripod, and the other designed to be

held in position by an operator.

6

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 1.1: Comparison of commercial optical strain analysis systems.
GOM ARGUS ViALUX AutoGrid

Tracked surface feature Dots or speckle pattern Line-based grid
Number of cameras 1 4

Advertised strain accuracy 0.01% 0.2%

1.3 Current Limitations

Optical imaging is one of the few ways that surface deformation information can be

obtained from parts in an industrial environment. Current optical approaches for

strain measurement suffer from some limitations. The commercial offerings attempt

to address some of the issues, as does this thesis. The primary limitations of current

systems include:

• Measurement equipment designed for small part sizes, and not automotive scale

parts

• Motorized scanning systems require path programming

• Insufficient capability in current systems to scan large parts with high accuracy.

Large parts are typically imaged from greater distances.

• Lighter weight materials require finer strain measurement grids to assume ho-

mogeneous deformation in strain computation.

1.4 Thesis Objectives

The objective of this thesis is to develop an architecture, algorithms, and techniques

that move toward the goal of a high-speed, high accuracy 3D measurement system.

Challenges are addressed relating to hand-guided free form scanning of surfaces at

close range, where the camera field of view is small compared with the part surface.

While sheet metal surface strain analysis is a motivating application, such anal-

ysis critically relies on the accurate collection of large quantities of 3D surface mea-

surement data - for some production environments, collection of this data may be

7

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

challenged by adverse imaging conditions and the requirements for fast measurement

speed.

This thesis is therefore restricted to addressing the important issues related to

the capture of surface measurement data. However, an overarching goal is to provide

an approach that may be useful in practice, meaning that convenient and fast data

capture performance is desirable. The algorithms that are developed (and the tech-

niques for their computational acceleration) can be extended to other applications,

and are designed to be scalable to finer mesh sizes and larger strain gradients, etc.

Extension to different measurement approaches is possible, including recovery of 3D

surface information using projected structured light [124, 182, 54]. It should be noted,

however, that strain measurement systems specifically require affixed grids or other

targets so that stretching due to deformation may be detected.

1.5 Contributions of this Thesis

The significant contributions described by this thesis include:

1. System design and work flow for a manually manipulated CMM-based monoc-

ular vision system for accurate 3D surface measurement

2. Approach for accurate sub-pixel measurement of grid line intersections in the

presence of depth-of-field blur

3. GPGPU-based acceleration of the scale-space ridge extraction algorithm

4. Topologically-based algorithm for efficient and robust interframe motion track-

ing of surface grids across long video sequences in the presence of depth-of-field

blur

5. Approach to camera calibration across close-range video sequences without

unique grid identifiers (coded fiducials)

6. Algorithms to robustly assign model coordinates across large data sequences,

in presence of significantly varying depth-of-field blur

8

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

1.6 Thesis Organization

This thesis is organized into seven chapters (including this introductory material of

Chapter 1) as follows:

In Chapter 2, background information is provided on multiple view triangulation

and its application to sheet metal strain analysis. Close-range imaging with narrow

depth of field is described, and the overall architecture and data flows of the new

proposed measurement system are presented.

Chapter 3 considers approaches for measurement of the imaged grid lines using

conventional feature detectors. Background on scale-space feature extraction is then

provided in brief, followed by description of a ridge detection approach capable of

measuring grid lines in the close-range images. Computational intensity of the ridge

measurement algorithm is examined, and CPU suitability for video-rate implementa-

tion considered.

Chapter 4 provides an introduction to graphics processors in the context of general

purpose computation, and then describes design of the ridge detection algorithm for

acceleration using state-of-the-art GPGPU hardware. Performance results are pre-

sented from experimental implementation of the accelerated algorithm. An algorithm

to filter ridge data and interpolate grid line intersections through polynomial fitting

is described, and an accuracy validation study is presented using synthetic data to

verify correct operation of grid measurement in the presence of depth-of-field blur.

Experimental results using real video sequences are also provided for comparison.

Chapter 5 presents an innovative algorithm developed for topological interframe

motion tracking of gridded sheet metal samples. The algorithm provides accurate

tracking of grid motion over large areas, and across multiple video frames, that is

critical for proper calibration and subsequent strain measurement. Topological grid

structure is used to reduce the dimensionality of the projective interframe tracking

problem. Results are presented from the algorithm for typical video sequences, and

statistics are provided on the objective function demonstrating the robustness of the

approach.

Chapter 6 considers calibration of the system. State-of-the art techniques are

briefly reviewed, and an approach for camera and hand-eye calibration of the new

9

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

system is described. This chapter then contributes image data pre-processing algo-

rithms required for application of the close-range video data to Zhang-based calibra-

tion algorithms. New pre-processing algorithms are proposed for coherent assignment

of model coordinates to imaged grid features across a video sequence, as well as for

performing grid approximations in highly blurred image frames where reliable features

have not been extracted.

The thesis concludes in Chapter 7.

10

Chapter 2

Background and System Design

This chapter describes the overall system design and resultant data flows developed

to meet the thesis objectives. An overview of surface strain analysis and three di-

mensional reconstruction techniques are presented first, followed by an analysis of

camera-to-target imaging distance to obtain acceptable measurement accuracy. The

chapter concludes with a description of the system design including camera synchro-

nization and data flows.

2.1 Surface Strain Analysis

2.1.1 Strain Computation

Stamping sheet metal between the surfaces of a die causes the metal to stretch or

compress, leading to strains in the material. These strains must be within the limits of

the material to ensure product strength. There are three primary strains of interest,

two of which can be calculated from the motion of surface features during deformation.

The surface strains are denoted ε1 and ε2, which are respectively called the major and

minor strains. A third strain, ε3, is the thickness strain, and can be computed from

ε1 and ε2. A technique pioneered by Sowerby et al. [146] may be used to compute

the surface strains from feature point motion as described next.

Deformation of the metal surface may be tracked by fixing rigid marks to the

surface prior to forming, and then measuring the relative positions of the marks after

11

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.1: Surface point deformation by material stretching (adapted from [146]).
Dark lines (to A,B) are the original point locations, and the bright lines (to A′, B′)
show the point location after surface deformation (and stretching).

stamping. Position of the marks may either be measured prior to deformation, or a

regular pattern such as a grid with known spacing may be used. Methods to rigidly

place a pattern, such as a line-based grid, on the metal surface include ink-based

screen printing, photo resist-based acid etching, or inkjet printing. The accuracy and

repeatability of the marking process determines whether feature points need to be

measured prior to stamping to ensure reliable strain results.

Figure 2.1 shows three points from a line-based grid pattern both before deforma-

tion (points A, B, C), and after (points A′, B′, C). Point C is chosen as the origin

to measure relative displacements, so appears unchanged in the figure. Through the

technique [146], a linear system is introduced to define the mapping of points across

the deformation as:

[

x

y

]

=

[

F11 F12

F21 F22

][

X

Y

]

(2.1)

The original point locations are denoted (X, Y), and the deformed locations (x, y).

12

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.2: Sample forming limit diagram. Adapted from [147].

Such a linear mapping assumes a homogeneous deformation, and thus requires that

the spacing of the measured points be small compared with the local strain gradient.

The transformation coefficients F are assumed to be constants for the region in

which strain is being measured. By considering the undeformed line pairs AB and

AC as the (not necessarily orthogonal) basis of the coordinate system, the coefficients

F may be calculated from the displacements of points A and B in Figure 2.1. The

coefficients F are assumed to be constant for the region, and therefore affect the

deformations of both points A and B, leading to the system:

x′ = X ′F ′ (2.2)

x1

x2

y1

y2

=

X1 Y1 0 0

X2 Y2 0 0

0 0 X1 Y1

0 0 X2 Y2

F11

F12

F21

F22

(2.3)

Point A is deformed from location (X1, Y1) to (x1, y1), and point B is deformed from

position (X2, Y2) to (x2, y2). The surface strain values may be computed from F

according to the relationship ε1,2 = ln(λ1,2), where λ1,2 are the eigenvalues of F .

Further details of the derivation are available from [146].

A third strain value, ε3 = −ε1 − ε2, is the thickness strain.

13

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

A sample Forming Limit Diagram (FLD) is shown in Figure 2.2, and is used to

ensure that a part has not exceeded material strain limits during deformation. The

limit curve in the FLD is often determined through progressive deformations and

strain analysis of material samples from a specific batch, and is used to define safe

deformations across a range of major and minor strains. Results from measurements

across a part surface are typically compiled into a strain diagram, and then overlaid

onto the FLD to check for values exceeding the safe limits. If the strain values are

calculated at known three dimensional locations on the part surface, a thickness strain

plot can be overlaid on the part geometry.

2.1.2 Surface Strain from Three-dimensional Reconstruction

The common manual approaches for strain computation require only two dimen-

sional measurement of a part surface. Measuring the deformation of surface features

is sufficient to estimate material stretching. Verification that part geometry is within

tolerance, however, typically requires a three dimensional reconstruction. If the fea-

tures used for 3D reconstruction are rigid on the metal surface throughout deforma-

tion, and if the feature geometry is either known or measured before stamping, a

deformed reconstruction is sufficient to simultaneously validate part geometry and

calculate surface strain values. With this observation, only 3D reconstruction based

on fixed surface features need be considered, with the understanding that surface

strain analysis follows directly from the reconstructed geometry data. The ability to

simultaneously measure deformed sheet metal geometry and compute dense surface

strain data is a strong advantage of vision-based measurement techniques.

2.1.3 Feature Grid Scaling

With the intended application of surface strain analysis, the size and density of printed

or etched surface features affects the resolution and accuracy of the computed strain

values. Standard strain computation methods are based on the assumption that

each region bounded by neighbouring feature points (neighbours for a single strain

value computation) undergo homogeneous deformation. During industrial manufac-

turing, the strain gradients are typically small enough over most of the surface that

14

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 2.3: Sample images of gridded parts: (a) Deformed test dome with silkscreened
grid (10 lines/inch); (b) Flat aluminum surface with photographically printed grid (10
lines/inch).

homogeneous deformation is considered reasonable [146]. As a consequence of this

assumption, the frequency of the spatial measurements must be large enough that

there is little to no strain gradient across each area defined by neighbouring features.

Larger strains and gradients require finer grids, with under-sampling directly leading

to errors in the computed strain.

Sample automotive parts examined exhibit obvious strain gradients based on the

degree of change in surface curvature. Within this thesis, a line-based grid pattern

of ten lines per inch is used as shown in Figure 2.3. This line spacing provides

sufficient feature frequency for typical automotive part analysis, and enables finer

strain analysis than CGA systems. To measure parts with larger strain gradients,

the grid spacing can be further reduced without any changes to the approach or

algorithms presented in the thesis. Adaptability of the algorithms to finer grids

and strain gradients is a critical advantage of the proposed system, and allows the

approach to evolve with expanding forming limits and new materials.

Grid patterns can be formed from a variety of geometric features. A line-based

grid is adopted to allow for ease of production, and also to simplify accurate feature

detection as described in Ch. 3. Lines can be etched or printed without difficulty, and

provide dense data from which to interpolate intersections to a sub-pixel resolution.

The density of data is superior to isolated features such as dots, in which sub-pixel

15

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

feature locations must be interpolated from a much smaller set of pixels.

A common pattern used in computer vision is the checkerboard grid, where alter-

nate squares of a line grid are filled in. Such grid patterns are avoided in this work for

two reasons. First, the pattern is more difficult to produce reliably on a large surface

when the feature (square) size becomes small. More importantly, feature detection

from this pattern is asymmetric, so in the presence of imaging conditions leading to

blur, feature detectors may become biased.

2.2 Close-range Optical Computer Vision

Like the human eye, optical measurement techniques use light to infer information

about the world. In the context of three-dimensional reconstruction, these techniques

may be broken into three categories [100], determined by the fundamental property

measured:

1. Triangulation-based techniques: Two or more views of a feature can al-

low three dimensional information to be calculated (triangulated) from the two

dimensional image data. Photogrammetric techniques are of interest in the

context of this thesis, as opposed to active structured light or other triangu-

lation methods. Photogrammetric triangulation is typically based on reflected

intensity or colour information, as recorded by an imaging device.

2. Interferometry: Useful for target ranging and tracking, typically through

laser interferometry [150].

3. Time-of-flight measurement: Principle behind laser scanners and Light De-

tection and Ranging (LIDAR) [172] systems.

Photogrammetry is the process of taking measurements from photographs, typ-

ically digital images. “Close-range” photogrammetry has been defined by [100] as

applying to objects ranging from a few metres in size down to less than one metre,

with accuracies better than 0.1mm. To reconstruct a stamped metal surface in three

dimensions, a close-range photogrammetric approach is selected for the following rea-

sons:

16

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

1. Intensity markers: Images provide colour or greyscale intensity information,

making it possible to locate marker features on the sheet metal surface after

deformation, a critical requirement for subsequent surface strain computation.

Laser scanners, for example, paint surface points but do not identify the posi-

tions of intensity features on the surface.

2. Cost: Cameras are significantly less expensive than many alternatives such as

laser scanner systems. Considering the need to locate discrete surface features,

high quality or experimental laser scanners or other devices would typically be

required.

3. Non-contact: Optical systems use light as the information carrier, which pro-

vides data sampling that is faster and denser than contact-based approaches.

When physical contact is used to probe the dimensions of an object, additional

fixturing is required to secure the part from displacement caused by the mea-

surement process.

4. Compute power: An increasing availability of computer processing power

and technology allows large volumes of data to be processed at realtime speeds,

enabling an image-based solution to this class of application.

5. Scalability: Camera resolution may be readily modified based on the target

application, allowing camera cost and compute power to be scaled according to

the application needs.

6. Operability: An optical approach is easily understood by operators, who can

naturally see the data that the system is capturing. Manual operation or inter-

vention is easily trainable because human feedback mechanisms can be directly

transferred to operation of the system.

7. Versatility: A manually driven optical approach removes the need for path

planning or other task-specific programming, and can be quickly adapted to

changing needs such as failures as encountered on a production line, for example.

CCD or CMOS cameras are typically used to capture data for optical computer

vision. An obvious system parameter, that consequently drives selection of a camera

17

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

system and optics, is the intended distance between the camera and object to be mea-

sured. Given a grid density on the order of 10 lines/inch and the need to accurately

detect intersections to a sub-pixel accuracy, a well posed approach is to maintain pixel

size smaller than the imaged line width. An ideal grid line may be modelled as two

step edges separated in distance by the line width. If imaged grid lines are smaller

than the pixel size, both step edges may occur within the same pixel. Through the

combination of feature detector characteristics, point spread functions of the image

pixels, presence of blur and noise, non-linear lens distortions, and camera positioning

error, a precise line position can become nearly inseparable from the various other ef-

fects. Even by fitting error minimizing functions to the grid lines across large regions

of the image, accuracy in the estimated line intersection locations are affected by the

low spatial signal to noise ratio.

To better pose the initial data collection and feature extraction problem, an im-

aged grid line width larger than the sensor pixel size is desired. In these imaging

conditions, the effect of image capture and feature extraction error is reduced relative

to the grid size. An analysis of surface strain error relative to camera target distance

is provided in Section 2.2.4.

2.2.1 Review of Pinhole Camera Imaging Model

When the three-dimensional world is imaged using a typical camera, light from the

outside world is projected onto the camera image plane. Although modern cameras

and lens systems are complex to model precisely, simplifications and standard models

allow the geometry of imaging systems to be easily understood, and form the basis

of many multiple view vision techniques. The standard pinhole camera model [60] is

briefly reviewed in this section. A description of many alternative camera models is

provided in Sturm et al. [154].

Figure 2.4 shows a pinhole camera imaging a world pointXi. A pinhole (very small

hole) at the origin of the coordinate system is the only opening through which light

can pass from the +z to the −z halfspaces, and is in reality the camera aperture.

For a light ray from point Xi to meet the image plane (at point xi), it must pass

through the camera coordinate system origin. Figure 2.4 depicts the image plane on

the +Z side of the origin, a convention known as a virtual image plane, which is used

18

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.4: Three dimensional view of pinhole camera imaging a world point X.

to simplify analysis by avoiding projective image reversal.

To capture the internal or intrinsic parameters of the pinhole camera, a matrix K

is defined as:

K =

α γ u0

0 β v0

0 0 1

(2.4)

where u0 and v0 are principal point coordinates, α and β are the scaling factors, and γ

defines skew between axes. The principal point coordinate offset allows the pixel origin

of the image plane to be moved to a corner rather than the centre, preventing negative

pixel coordinates, and following the convention used in many vision algorithms. The

scaling factors account for rectangular pixel geometries, the camera focal length, and

provide a scaling between the world coordinate and pixel sizes. The skew factor γ

allows the image sensor pixel locations to be skewed during the manufacturing process,

and is zero for most modern cameras designed with rectilinear pixels.

In Figure 2.4, the world point Xi is defined in the local camera coordinate system.

In reality, world points are defined in a world coordinate system which is related to the

camera system through a rigid transformation [R t]. R is a rotation matrix between

19

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

the two systems, and t is the offset. The transformation captures the camera position

and pose in the world frame, and provides the external or extrinsic parameters of the

camera. Defining points using homogeneous coordinates, a world point M̃ is projected

to an image point m̃ using the projective imaging equation:

m̃ = K [R t] M̃ (2.5)

In real camera systems, a lens is used to gather more light than a pinhole can

provide. Lenses produce distortions and aberrations (discussed further in Chapter 6),

but a more significant affect in this work is the associated focal depth of field.

2.2.2 Depth of Field

Depth of field (DOF) refers to the range of distances that an object may move along

the camera axis and still be considered in focus. To better define what is meant by

“in focus”, a photography term known as the acceptable circle of confusion (CoC)

may be used. Figure 2.5 illustrates the DOF concept. Rays emanating from the

“ideal focus point” point meet at a single point on the camera image plane, and are

therefore in focus. The remaining points (shown in red and blue) have focal distances

offset from the image plane, and so appear on the image sensor as diffuse. The diffuse

region on the image plane is by definition the circle of confusion. For a fixed CoC

size, bounding distances can be defined in the object space for which diffuseness is

no larger than the CoC. The range of distances in object space that meet a specific

CoC size is defined as the DOF.

The CoC size that is considered acceptable depends strictly on the application.

Considering human perception, as long as the CoC is smaller than or on the order

of one image sensor pixel size, the image appears sharp [100]. Assuming a thin lens

without aberrations, and objects near the optical axis, the bounding CoC object

distances may be calculated using similar triangles and the geometries illustrated in

Figures 2.6(a) and 2.6(b):
c
2
d
2

=
VC − V

VC

(2.6)
c
2
d
2

=
V − VF

VF

(2.7)

20

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.5: Depth of field illustration. The ideal focus point (shown in green) is in
focus on the image plane. The remaining two points (shown in red and blue) are out
of focus, and the size of this defocus on the image plane forms the circle of confusion.
The range of image target distances that produce a small circle of confusion (1 pixel
in this case) define the depth of field (DOF) for the specified aperture setting.

Considering the standard aperture F-stop equation of:

N = f/d (2.8)

where N is the F-stop number, f is the focal length and d is the circular lens diameter

at the given aperture, Equations 2.6 and 2.7 may be rewritten:

Nc

f
=

VC − V

VC

(2.9)

VC =
V

1− Nc
f

(2.10)

Nc

f
=

V − VF

VF

(2.11)

VF =
V

Nc
f
+ 1

(2.12)

To relate the distances VC and VF to the world space, the thin lens equation can

be applied:
1

s
+

1

V
=

1

f
(2.13)

where s is the lens to object distance, V is the lens to image plane distance, and f is

the focal length of the system, defined as the distance from lens to focal point when

collimated rays enter the lens.

21

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 2.6: (a) Geometry for calculation of object space close-range bound (VC) on
CoC; (b) Geometry for calculation of object space far-range bound (VF) on CoC.

The DOF distance limits dc and df , as shown in Figure 2.5, are then expressed

as:
dc =

f 2s

f 2 + cN(s− f)
(2.14) df =

f 2s

f 2 − cN(s− f)
(2.15)

The depth of field is therefore expressed as:

DOF = df − dc

=
2f 2s(s− f)cN

f 4 − c2N2(s− f)2
(2.16)

Figure 2.7 shows the DOF range across varying focal distances, at multiple aper-

ture f-settings. In the figure, the camera focal length is 12mm, and the limiting circle

of confusion size is set to the pixel size of a sample camera (4.65µm). The DOF is

small at close range, meaning that deviation from a perpendicular angle between the

camera and a flat surface quickly results in DOF blur. Parts that are curved be-

yond the DOF limits within the frame also encounter blur. Increasing the f-number

(decreasing aperture size) increases the DOF, but results in less light collection and

therefore longer exposure times. Longer exposures decrease the available frame rate,

but more significantly increase the chance of motion blur when the camera is man-

ually manipulated. There is a trade-off between aperture setting and DOF, which

22

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Focal distance [mm]

D
e

p
th

 o
f

fi
e

ld
 [

m
m

]
Depth of field across focal distances

N=1.4
N=2
N=2.8
N=4
N=5.6
N=8

(a)

0 200 400 600 800 1000
0

100

200

300

400

500

600

Focal distance [mm]

D
e

p
th

 o
f

fi
e

ld
 [

m
m

]

Depth of field across focal distances

N=1.4
N=2
N=2.8
N=4
N=5.6
N=8

(b)

Figure 2.7: Variation in depth of field with varying focal distance and f-stop.

plays a role in the ability to focus the camera when oblique viewing angles are used

for multiple view triangulation.

2.2.3 Multiple View Triangulation

When the three-dimensional world is projected onto a two-dimensional camera image

plane, information is lost about the depth of the imaged point from the camera. As

shown in Figure 2.8(a), points lying on a common ray from the camera centre will

project to the same point on the image plane. Additional camera views from different

positions may be used to determine the unique world point location (with appropriate

camera positioning and calibration), as shown in Figure 2.8(b). From distinct camera

positions viewing a single point in 3D space, assuming that the point can be exactly

located in both images, then the point location can be reconstructed.

A variety of well known techniques are available to perform 3D reconstruction from

multiple camera images. Good descriptions of reconstruction techniques are available

in books by Hartley et al. [60] and Faugeras et al. [39]. Reconstruction of structure

typically involves epipolar geometry, with imaged feature coordinates across images

related by the essential matrix E when the camera calibration is known, or the fun-

damental matrix F in the case of uncalibrated cameras [61, 60]. From corresponding

point locations across two or more images, a linear triangulation may be performed to

23

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 2.8: (a) Points lying on a single ray from the camera centre. Distance along
the ray cannot be determined from the single imaged point, although the ray direction
can be ascertained; (b) Two camera views of a world point from different positions
allow the point location to be triangulated.

locate the original point in 3D space using, for example, the Direct Linear Transform

proposed by Abdel-Aziz et al. [1]. Iterative non-linear reconstruction techniques are

well known and typically formulated as optimization problems, as described in [60].

In the presence of noisy image feature locations and camera parameters, bundle ad-

justment is used to refine not only the estimated 3D reconstruction points, but also

the camera matrices to minimize error between expected and measured image feature

locations [165, 98].

Presence of a grid (and therefore distinct conformal features) on the sheet metal

surface avoids a substantial difficulty often encountered in three-dimensional recon-

struction, that of point correspondence between images. Multiple view correspon-

dence is a problem which is still actively researched and unsolved in many general

imaging conditions [12].

24

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.9: Triangulation error region given image point measurement uncertainty.
A narrow baseline increases the triangulated depth uncertainty.

2.2.4 Surface Strain Error and Imaging Distance

Error or uncertainty in measured image coordinates leads to error in the triangulated

intersection, as illustrated by Figure 2.9. The size and shape of the error region

depends on the magnitude of measurement uncertainty, the angle between camera

principal axes, and the camera positions (Figure 2.9 shows symmetric camera posi-

tioning).

The distance between camera and target affects system accuracy in terms of sen-

sitivity to feature extraction and camera positioning errors, and also through in-

creased computing requirements to process numerous small field-of-view images at

close range. Optimization techniques such as bundle adjustment attempt to mini-

mize errors in camera matrices and reconstructed position while considering all data

simultaneously, but reducing initial error sources leads to a more robust measurement

system. In order to analyze the effect of image measurement and positioning errors

25

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.10: Geometry of camera triangulation simulation.

in the system relative to imaging distance, triangulation error is considered.

A two-dimensional model of a camera triangulation system is shown in Figure 2.10.

The measured feature locations in the images are chosen as the source of error for

analysis, which have a similar effect to camera positioning and pose errors when

considering point triangulation. Camera position and pose errors can be analyzed

separately, but to illustrate the reasoning behind the close-range vision approach,

pixel measurement error is sufficient.

A Monte Carlo analysis is performed by adding error to the detected pixel loca-

tions in each of the two camera image planes in Figure 2.10. An erroneous point

is triangulated, and the distance from this point to the ideal (error free) point is

recorded.

The error level in detected feature location is selected from a normal distribution

with σ = 1
10

pixels. The error is intended to represent both image measurement and

camera position/pose errors, and in real-world systems depends on the hardware and

system used. The level of error selected is reasonable for current systems, and is

meant to be instructive. Experimental analyses of edge detection position error in

26

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.11: Histogram of horizontal (±X) and vertical (±Y) error distribution from
1 million simulation points. Image pixel errors were normally distributed with σ = 1

10

pixels, camera vergence angle was αv = 45◦, and camera imaging distance was 20 cm.
The horizontal and vertical reconstruction errors have different standard deviations,
caused by the vergence angle of the cameras.

the presence of noise and varying angle are available in the literature, and support the

error level used in this analysis. Steger et al. [148] obtained edge position error with

maximum standard deviation of ≈ 1
30

pixels, while Devernay et al. [30] measured

edge position error with standard deviation < 1
10

pixels. These error levels support

the choice of 1
10

pixel error standard deviation for simulation.

Figure 2.11 shows histograms of the reconstruction error from simulation of one

million data points, where the camera imaging distance is set to 20 cm and the

vergence angle αv = 45◦. Horizontal error is along the X axis, and vertical error is

in the Y axis direction, as defined by Figure 2.10. The vertical error has a larger

standard deviation compared with horizontal error, which is a result of increased

depth uncertainty caused by the non-orthogonal camera vergence angle (as expected

from Figure 2.9).

Results from a sweep of camera to target distances are presented in Figures 2.12

27

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c)

Figure 2.12: Monte Carlo simulation results from a sweep of camera distance from tri-
angulation point, using 10000 trials per data point with the system geometry shown in
Figure 2.10, and a camera vergence angle of αv = 90◦. (a) Point cloud of triangulated
points using camera to target distance of 1 m. (b) Magnitude of total error vector,
with black horizontal line indicating 1% error margin for strain reconstruction. (c)
Horizontal (±X) and vertical (±Y) error levels, with black horizontal line indicating
1% error margin for strain reconstruction.

28

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c)

Figure 2.13: Monte Carlo simulation results from a sweep of camera distance from tri-
angulation point, using 10000 trials per data point with the system geometry shown in
Figure 2.10, and a camera vergence angle of αv = 45◦. (a) Point cloud of triangulated
points using camera to target distance of 1 m. (b) Magnitude of total error vector,
with black horizontal line indicating 1% error margin for strain reconstruction. (c)
Horizontal (±X) and vertical (±Y) error levels, with black horizontal line indicating
1% error margin for strain reconstruction.

29

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 2.14: Monte Carlo simulation results from a sweep of camera vergence angle
αv, using 10000 trials per data point with the system geometry shown in Figure 2.10.
(a) Magnitude of total error vector with camera to target distance of 10cm. Black
horizontal line indicates 1% error margin for strain reconstruction. (b) Magnitude
of total error vector with camera to target distance of 30cm. Black horizontal line
indicates 1% error margin for strain reconstruction.

and 2.13, with the only difference between the two being the camera vergence angle.

Horizontal dotted lines on the graphs indicate an error level of 1% of the grid spacing

(≈ 25 µm at 10 grid lines/inch), and therefore approximately correspond to a strain

error of 1%, which is the desired error threshold. Where a part surface is parallel to

the camera plane, horizontal error is the prime contributor to strain errors. In reality

the camera is imaging curved parts and is held at an angle to the part surface for

triangulation, so vertical (depth) error is also significant. In terms of part dimensional

analysis, error in both dimensions is equally important. As can be seen from the

results, the error budget is quickly exceeded as the camera to target distance increases,

especially when the vergence angle is smaller (such as αv = 45◦ in Figure 2.13). Given

the DOF constraints at close range, large camera vergence angles are not practical

because most of the field of view becomes blurred. Vergence angles on the order of

45◦ are practical, as tested using real cameras.

A sweep of the camera vergence angle is shown in Figure 2.14 for two camera to

target distances, 10 cm and 30 cm. As the camera moves further from the target,

30

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

extreme vergence angles are required to bring the error level near the 1% error margin

(shown as block dotted lines), which are not practical given DOF constraints at close

range.

Within this work, the image acquisition distance between camera and target is

smaller than used by commercial systems. Imaging from a larger distance reduces the

computational workload imposed by image feature extraction and interframe motion

tracking across numerous frames, and allows unique feature points to be identified for

grid registration across image frames. Larger imaging distances, however, increase

the effect of measurement errors on the reconstruction results.

The two dimensional simulation provides an overview of the error margins present.

In reality, each camera has two-dimensional image plane error, and the reconstruction

contains three-dimensional error. The increased dimensionality causes error magni-

tudes in reconstruction to become larger, while additional views (more than two) of

a feature point reduce the error. The worst case number of views to enable triangu-

lation is two, but a well scanned part should contain additional views of each surface

grid intersection. The level of error reduction through multiple views depends on rel-

ative camera positions and final optimizations, so controlling error through imaging

distance is important to ensure accurate reconstruction. The simulations presented

in this section reinforce the idea that close-range imaging is a critical factor for re-

construction within acceptable error levels.

Close-range imaging, on the order of 10-20 cm from a part surface, introduces two

key difficulties in the data acquisition process.

1. DOF blur: Close-range imaging leads to a narrow DOF. The combination of

human camera manipulation, curved part surfaces, and the requirement for a

baseline distance between camera views invariably leads to DOF blur. Process-

ing algorithms must be capable of operating in the presence of blur.

2. Data density and computation load: Close range leads to a camera field

of view that sees only a portion of most automotive parts. The camera must

therefore be moved to image the entire surface, leading to video sequences in

which motion must be tracked to correlate grid points between views. This

is in contrast to commercial approaches that take few images from a distance,

where global identifiers are used to correlate feature points, and where image

31

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

processing occurs on a small set of data. Computation is further complicated by

the presence of DOF blur in the images, which may necessitate more complex

image processing approaches.

In contrast to the commercial optical strain analysis systems described in Section

1.2.4, the approach taken by this thesis involves imaging at a closer range. This

approach is designed to better pose the data used for reconstruction, and to make

the system scalable to much stronger strain gradients through imaging of a finer

grid. The close-range imaging conditions introduce challenges not experienced by

the commercial systems, such as DOF blur and inability to capture the entire part

within a single image. These challenges are addressed throughout the remainder of

this thesis. Although the algorithms are intended for the challenges of close-range

imaging, they operate without modification at larger distances such as those used by

commercial systems, where close-range effects are not significant.

2.3 Monocular Vision using Coordinate Measur-

ing Machine

To control error levels, a typical imaging distance of less than 20 cm is selected

for data acquisition (although much larger distances are supported by the algorithms

without modification). At such distances the camera field of view does not encompass

a complete part surface, so must be moved across the surface to image not just the

completed part, but each grid line intersection from at least two views. To enable

subsequent triangulation, a method is required to measure the camera position and

pose at the instant that each frame is captured. An articulated arm Coordinate

Measuring Machine (CMM) is selected to provide this measurement. The articulated

arm is passive, so a human operator must physically move the camera while the CMM

simultaneously measures the motion. Manual manipulation of the camera is chosen

to eliminate path programming required for a robotic device, and to simplify mobility

in an industrial environment.

Given that a human must manipulate the camera, a single camera mounted to

the CMM is used. Stereo or trinocular vision systems are not practical for manual

32

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

manipulation at close range because of the narrow camera DOF. Given a required

vergence angle between multiple view cameras, a human operator is required to main-

tain reasonable focus using feedback from, for example, real-time video output display.

Maintaining focus on more than one camera is not practical for most human oper-

ators, so a monocular approach is used, obtaining temporal (as opposed to spatial)

stereo by imaging each grid line intersection in multiple video frames from different

positions. Further reasons for use of a single camera include reduced cost, simplified

calibration, and mechanical robustness of the mount connecting the camera to the

CMM tool point. A major consequence of temporal stereo is that images are taken

at different times, so the target must be static across the video sequence. This as-

sumption is safe for sheet metal parts (before or after forming), but the approach is

not suitable to imaging of a part during an active deformation process.

2.3.1 CMM Details

Figure 2.15: Scanning automotive heat shield surface using single camera mounted
to FARO arm.

33

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.16: Scanning automotive heat shield surface using single camera mounted
to FARO arm.

The CMM used for this work is a Gold FaroArm, produced by FARO Technologies

Inc. The command interface was provided to the research group by FARO, allowing

custom software to command, configure, and receive data from the arm. Standard

use of the FaroArm is for touch-probe based measurement, with a probe attached to

the toolpoint. In typical operation, a technician manipulates the probe tip to touch

the surface requiring measurement, and then presses a button to latch and store the

position.

For this work the touch probe is removed from the FaroArm toolpoint, and re-

placed with a custom camera adapter. Latching of arm position data is synchronized

with the camera shutter, as described in Section 2.3.4. Figures 2.15 and 2.16 show

the camera-equipped FARO arm being used to scan a large truck exhaust system heat

shield.

Tests performed on the Gold FaroArm in June 2005 obtained an accuracy standard

deviation of 27 µm with a maximum measured error of 108 µm. Current generation

FaroArm devices (FARO PowerGage) are accurate to ≈ 5 µm(0.0002”) [69].

34

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 2.1: CMM Arm Specifications
Manufacturer FARO Technologies Inc.
Model Gold FaroArm
Single point accuracy (2 σ) 51 µm
Measurement radius 7 feet
External position latch trigger capability Two auxiliary TTL trigger ports
Output RS-232 serial

Table 2.2: Camera Specifications
Manufacturer Point Grey Research Inc.
Model Dragonfly
Signal and power interface Firewire (IIDC-1394)
Resolution 1024 × 768
Pixel depth 8-bits/pixel
Pixel size 4.85 µm(H) × 4.85 µm(V)
Image sensor Sony ICX204 (1

3
” HAD CCD)

Available frame rates 1.875, 3.75, 7.5, 15 fps
Shutter speeds 1

6000
s up to 60 s

Signal to noise ratio > 50 dB at minimum gain
Dimensions 6.35 cm × 5.08 cm × 1.32 cm (without lens)

2.3.2 Camera Details

The camera used for this work is a Dragonfly from Point Grey Research, as detailed

in Table 2.2 [132].

A 12 mm Cosmicar/Pentax lens with low distortion for metallurgy is attached to

the camera. A 1 mm extension ring placed between the lens and camera CS-mount

reduces the minimum object focus distance for close range imaging. The camera is

allowed to perform automatic exposure control, so bright lighting in the vicinity of

the camera helps to reduce the exposure time, which leads to less motion blur in the

image.

The camera is monochrome to avoid complications in subpixel grid line detection

when a colour filter pattern is placed over the CCD chip. Colour image sensors

typically employ a primary colour mosaic filter, often in a Bayer pattern, to produce

the apparent colour image. Neighbouring pixels consequently respond to different

light wavelengths, which complicates accurate subpixel feature measurement. If a grid

35

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

pattern of specific colour is of interest, it suffices to place a filter on the monochrome

camera to enhance grid contrast without adding non-uniform colour response to the

sensor.

Considering the challenges of narrow DOF in close-range imaging, an obvious

strategy is to use an auto-focus lens assembly. The problem with this approach is the

changing camera calibration as the lens focus is modified. Calibration of automated

lenses has been studied, for example in [175, 174]. For accurate metrology, a fixed

parameter camera (fixed focus and aperture setting) is easier to calibrate, and provides

confidence in the camera model used during triangulation and point reconstruction.

Regardless of the constantly changing calibration, auto-focus lenses do not solve the

DOF blur problem. Mean focus error may be minimized, but the DOF remains small

at close range, resulting in blur when a part surface curves, or when the camera is

held at an oblique angle to the surface.

2.3.3 Camera Trajectory Constraints

There are three primary constraints on the camera operator while scanning sheet

metal surfaces with the proposed system.

1. Focus: The camera should be maintained at an imaging distance where most

of the image appears in focus. Some outlier frames invariably occur where

the entire image is DOF blurred as the operator corrects the camera position,

but these instances should be minimized because they lead to frames where

triangulation data is not obtained. Feedback to the operator is provided through

display of video data from the camera.

2. Multiple views: To perform three-dimensional reconstruction of the grid line

intersections, each intersection must be imaged from more than one camera

position. Variety in the camera positions reduces error in the reconstruction,

so it is up to the operator to image the entire surface from a variety of camera

poses.

3. Speed of motion: Motion blur in images, caused by translation and/or ro-

tation of the camera during a single frame integration time, should be avoided

36

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

because of increased uncertainty and error in the extracted line intersection

locations. This form of blur is avoided by moving the camera smoothly and

slowly (less than approximately one cm per second for the Dragonfly camera).

Bright lighting near the imaged part decreases the shutter integration time, so

reduces the tendency for motion blur.

A human operator cannot operate the system perfectly, so later stages of pro-

cessing are used to judge the reliability of specific data frames, rejecting those that

contain unacceptable error.

2.3.4 Camera Synchronization

The CMM-mounted camera is manipulated by a human operator, so is in nearly

constant motion. The operator cannot freeze the camera motion for each image frame,

so the camera sensor integration and CMM latch triggers must be synchronized. In

this way, the CMM captures a position/pose data point simultaneously with the

camera shutter being triggered to begin an integration.

Both the FARO arm and camera provide facilities for external triggering. As

shown in Figure 2.17, a microcontroller is used to drive the simultaneous pulse signals

to the CMM and camera. The camera is grounded through the computer FireWire

bus, while the CMM is grounded to the wall power outlet. To avoid potential ground

loop problems, optical isolators are placed between the microcontroller and external

devices. Data from the camera (over FireWire) and from the CMM (serial port) are

both buffered. To ensure that the data received from the two devices is correctly

aligned temporally, a “go flag” is driven by the controlling computer. Prior to assert-

ing the flag, the PC flushes all camera and CMM receive buffers. Custom software

on the computer orchestrates buffer control, data reception, and also provides video

feedback on the computer screen so that the operator can maintain camera focus. On

startup, the software configures the CMM and camera to use the proper trigger and

capture modes.

To simplify hardware interfacing, the “go flag” signal in Figure 2.17 is not im-

plemented through a separate interface to the computer, but instead uses a General

Purpose I/O (GPIO) pin on the camera. The GPIO level is controlled using com-

mands sent through the FireWire bus.

37

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 2.17: Synchronization and data flows between the controlling computer, FARO
arm, and camera.

2.3.5 System Data Flows

Operation of the vision system is divided into two primary modes, with Figures 2.18

and 2.19 showing the primary processing stages in each of these. The first is system

calibration, which involves scanning of a flat grid surface to perform both camera

and hand-eye calibration, as described in Ch. 6. This mode is used when camera

parameters are changed (such as focus or aperture), or when the camera mount to the

FARO arm is adjusted. The second mode is used for part scanning and reconstruction,

and is effectively a subset of the operations performed in the calibration phase.

The blocks shown in Figures 2.18 and 2.19 are described in the remaining chapters

of this thesis. Ch. 3 and 4 cover the block labelled “GPU-accelerated grid intersection

detection”. Ch. 5 describes a grid motion tracking algorithm contained within the

“Pre-processing for camera calibration” and “3D grid reconstruction” blocks. Ch. 6

describes the “Camera/hand-eye calibration” and a portion of the “Pre-processing

for camera calibration” blocks.

38

P
h
.D

.
T
h
esis

-
M
ich

ael
K
in
sn
er

M
cM

aster
-
C
om

p
u
ter

E
n
gin

eerin
g

Figure 2.18: Calibration data flow with high level processing steps (dotted box indicates GPU accelerated compo-
nent).

Figure 2.19: Part processing data flow with high level processing steps (dotted box indicates GPU accelerated
component).

39

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

2.4 Summary of this Chapter

This chapter has described an overall system design and resultant data flows de-

veloped to meet the thesis objectives. An overview of surface strain analysis and

3D reconstruction techniques was presented, followed by an analysis of the camera-

to-target imaging distance required to obtain acceptable measurement accuracy. A

description of the system design including camera synchronization and data flows was

presented.

40

Chapter 3

Grid Line Intersection Measurement

In the surface scanning and calibration data flows described in the previous chapter,

a line-based grid forms the feature set to be measured from the close-range images

(described by Section 2.1.3). Intersections of the grid lines are suited for extraction

because they are well defined spatially, and form a regular structure from which the

surface strain and part geometries can be reconstructed. Detection and sub-pixel

measurement of grid line intersections in the presence of DOF blur is the topic of

this chapter. Suitable classes of feature detectors are reviewed, followed by descrip-

tion of the scale-space ridge extraction and parabola fitting solution. Contributions

of the chapter include: 1. Selection of scale-space ridge extraction for close-range

DOF blurred imaging to enable multi-scale (varying degrees of blur) extraction of

dense ridge data; and 2. Consideration of computational intensity of the scale-space

approach in the context of CPU implementation.

Please note that some material in this chapter has been previously published in the

Journal of Physics: Conference Series [74]1, Journal of Computer Aided Design and

Applications [73], CCECE Conferences in 2007 [71] and 2008 [72], and other aspects

have been submitted to the IEEE Transactions on Instrumentation and Measurement.

Figure 3.1 shows four sample images of gridded metal surfaces. In the context of

feature detection for close range metallurgical imaging, five attributes of the imaging

1Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

41

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Deformed test dome (10 lines/inch). (b) Deformed test dome (10 lines/inch).

(c) Calibration plane (10 lines/inch). (d) Calibration plane (10 lines/inch).

Figure 3.1: Sample images of gridded parts: (a) and (b) are from a deformed metal
dome sample, (c) and (d) are from a planar pattern. All images exhibit depth-of-field
blur.

conditions are significant, as visible in the samples.

1. Scale of features: As distance changes between the camera and gridded sur-

face, the size of grid lines and spacing between them changes relative to the

image pixel size.

2. Depth-of-field blur: The combination of close-range imaging and human op-

eration leads to inevitable depth-of-field blur, usually in portions of the image,

but often across an entire frame. Feature detection should operate regardless

of partial blur, and when excessive blur does exist, presence of the intersection

should be detected to enable interframe tracking.

42

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

3. Grid production method: Multiple methods of grid production are avail-

able including photochemical printing or etching, and silkscreen printing. For

adaptability to various applications, grid intersections should be detected with-

out significant algorithm adjustment between grid production methods, colours,

or line thicknesses.

4. Lighting: In practical industrial environments, uniform or non-specular light-

ing is difficult to guarantee. A robust feature detector must operate regardless

of varying lighting conditions as shadows and light intensities around the metal

surface change. Given the reflective nature of many sheet metal surfaces, specu-

lar reflections are expected from point source lighting, and should not be allowed

to prevent feature extraction unless the image pixels are saturated (for example

the left side of Figure 3.1(b)).

5. Varying magnitude of curvature: Grid line curvature depends on the mag-

nitude of deformation in the sheet metal. Even with undeformed planar sur-

faces, lens distortions can lead to non-linear appearance of lines, so straight-line

or fixed curvature approaches to detection are not suitable. Useful feature ex-

traction must operate reliably regardless of unknown and continuously varying

curvature in the imaged grid lines.

3.1 Existing Work

Measurement of line-grid intersections has only sparse coverage in the literature, espe-

cially when the lines are allowed to curve variably as in a metal deformation process.

One published algorithm for line intersection measurement in nerve cell images [138]

identifies arbitrarily curved line intersections, but requires perfectly skeletonized bi-

nary images of the lines. In close-range vision the challenge is to consistently detect

lines regardless of scale or blur, so reliably generating a skeletonized form is the

difficult part of the problem.

One form of grid that is considered extensively in the literature is a checkerboard

(or chessboard) pattern, where alternating grid squares are filled in. This style of

grid is often used as a target for camera calibration, with most techniques based on

43

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

corner detection (commonly the Harris corner detector [59] or a customized checker-

board specific operator) followed by line extraction through a technique such as the

Hough transform [35]. A review of checkerboard pattern extraction and a Hough-

based technique is provided by Escalera et al. [27]. Other related literature includes

[19] with an intensity saddle-point operator, [78] with a sub-pixel refinement process

for approximate checkerboard locations, and a multi-scale wavelet “X-corner” detec-

tor supporting incomplete checkerboard patterns [178]. Detection of squares with

uniquely coded identification marks for multiple view correspondence is considered

in [40], and results are presented indicating that extraction of the center of a square

is more reliable than the corners in camera calibration applications. A saddle point

detection scheme not requiring surface fitting is reported in [99].

Checkerboard patterns have received significant attention in the literature because

of their popularity for camera calibration, but as described in Section 2.1.3, asymme-

try makes them unsuitable for close-range vision applications. The results of Fiala et

al. [40] demonstrate an expected reduction in measurement accuracy when detecting

corners in the presence of focus-related blur, and reinforce the selection of line-based

grids for surface strain application.

Deformed sheet metal surface grid extraction is explored by Tuzikov et al. [167], in

which a morphological approach followed by skeletonization is used to extract the grid

intersection information. The paper notably observes that for the image data tested,

metallic reflections and grid damage from deformation result in a unimodal greyscale

distribution. This observation is significant because it precludes many thresholding

techniques that rely on bimodal pixel intensity distributions. Although the work

summarizes a sheet metal grid extraction algorithm, the morphological approach does

not extend to DOF blurred imaging with varying target range and scale.

3.2 Feature Detectors for Line-grid Measurement

In this section, approaches for grid line intersection measurement in the presence of

depth of field blur are considered. The approaches are based on well known classes

of feature detectors, and the merits of each in terms of robustness and stability are

briefly considered.

44

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

3.2.1 Edge-based

Edge detection operators can be used to detect the sides of grid lines in images. These

operators typically define edges based on spatial gradients in the image intensity,

with many modification and enhancements proposed throughout the literature. Early

seminal work on edge detection was by Marr and Hildreth [105], combining a Gaussian

smoothing operation with a spatial derivative through the Laplacian of Gaussian.

Canny [14] described an edge detection operator that was designed to be “optimal”

in terms of “good detection”, “good localization”, and single response to a single edge.

Canny also observed an uncertainty principle involving a tradeoff between detection

and localization of step edges in the presence of noise. Fleck [41] examined defects

such as deformations and gaps produced by common edge detection operators.

Sub-pixel edge extraction accuracy experiments were performed by Devernay et al.

[30] and Steger [148] in the presence of noise and varying line angle. Steger obtained

edge position error with maximum standard deviation of ≈ 1
30

pixels, while Devernay

et al. measured position error with standard deviation < 1
10

pixels. An analysis of

line and edge extraction from images using the Steger approach is presented in [149],

with consideration of bias and lines of unequal polarity.

Figure 3.2 shows edge detection results from two sample image regions with dif-

ferent levels of DOF blur. Results from application of the Canny edge operator to the

original image are shown, followed by the Canny operator applied after smoothing

with two Gaussian filter variances (σ = 2 and σ = 4).

Four primary challenges emerge when considering edge detection for close-range

grid line intersection measurement, as visible in Figure 3.2.

1. Edge detection in varying blur: The presence of blur causes even ideal step

edges to become diffuse. Edge detectors are typically matched to a level of

diffuseness through a low-pass filter or smoothing stage, which suppresses both

high frequency noise and edges that are sharper than expected. With a con-

tinuously varying level of blur (within even a single image), the necessary filter

parameters cannot be pre-determined or set as constant across an image. Dif-

fuse blurred edges furthermore lead to loss of localization information, causing a

shift in detected location for many standard edge operators. Multi-scale wavelet

edge detection [55] and scale-space techniques can address this difficulty.

45

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Original image region 1. (b) Canny operator applied to
image region 1.

(c) Image 1 after Canny oper-
ator with Gaussian smoothing
(σ = 2 pixels).

(d) Image 1 after Canny oper-
ator with Gaussian smoothing
(σ = 4 pixels).

(e) Original image region 2. (f) Canny operator applied to
image region 2.

(g) Image 2 after Canny oper-
ator with Gaussian smoothing
(σ = 2 pixels).

(h) Image 2 after Canny oper-
ator with Gaussian smoothing
(σ = 4 pixels).

Figure 3.2: Canny edge detection results on two regions of typical camera images,
showing examples of in focus and blurred imaging.

46

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

2. Grid line intersections based on middle of line, not edges: For a line-

based grid, each line has two edges. Calculation of the intersection to subpixel

accuracy requires an interpolation of the line centre. Figure 3.3 shows three

such approaches. Parabolas may be fit to the edges, and intersections of these

parabolas found to locate corners around the intersection. These corners can

then be used to estimate the centre line intersection point, using techniques

such as shown in Figures 3.3(b) and 3.3(c). The line centre may alternatively be

interpolated from the edge parabolas and intersected, as shown in Figure 3.3(d),

using a parabola averaging technique. A problem emerges in the bias introduced

by many edge detection operators, which must either be removed or shown to

be symmetric for any angle and diffusion of edge to be detected. Asymmetry in

bias between the edges on either side of the line immediately leads to error or

bias in the line centre estimation, and therefore intersection measurement error.

Detection asymmetry has been shown between the two edges of a line in, for

example, [148].

3. Disconnected line segments: Grid lines that intersect are coloured nearly

identically on the metal surface, so an edge-based approach forms islands around

the interiors of the grid lines (edges do not extend beyond a single grid unit,

as they are interrupted by the next intersecting line). Edges belonging to a

common line must be separated from the corresponding island, and associated

with other edge segments belonging to the same line before the intersection

can be measured. One solution, using a k-curvature approach to isolate edge

fragments, was presented by Mitchell [106].

4. Incomplete/noisy edges: When noise or DOF blur are present in an image,

the resultant edge response is typically broken with gaps and other inconsis-

tencies appearing along the true edge. A decreased signal-to-noise ratio in

significantly blurred image regions leads to increased noise detection, the result

of which can be seen in Figure 3.2. To extract grid lines it becomes necessary

to either fill the gaps, or to estimate the line information using techniques such

as the Hough transform [35] in the case of straight lines.

47

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Region of grid after application of Canny
edge detector (Gaussian σ = 2). Light (green)
lines are least-squares parabolas fit to the edge
data on either side of the line intersection.

(b) Line intersection estimate from intersection
of parabolas fit to line edges. Crossing of the
(blue) lines is estimate of intersection centre.

(c) Line intersection estimate from intersection
of parabolas fit to line edges. Midpoints of
line segments between the parabola intersec-
tions approximate grid line centres.

(d) Midpoint line as average of parabolas fit
to outer line edges. Intersection of the central
lines estimates grid line intersection.

Figure 3.3: Three approaches for grid intersection estimation from parabolas fit to line
edges. Canny edge detector used for this example (preprocessing Gaussian σ = 2).

48

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Edge detection is an indirect approach to grid line intersection measurement, re-

quiring interpolation of line centres from edge data. Coupled with the loss of localiza-

tion and continuity in blurred imaging conditions, and the potential for asymmetric

bias in complimentary edges, other approaches for grid line measurement are consid-

ered.

3.2.2 Ridge-based

Multiple representations of pixel intensity data from a grid image region are shown in

Figure 3.4. The original image is shown in (a), followed by a negative version of the

same region (b). Three dimensional views of the negative data (c) and (d) consider

the greyscale intensity to be a third vector dimension, and show that the imaged

grid lines appear as intensity ridges. Alternatively, without considering the negative

image, the darker grid lines can be considered as valleys in the intensity data.

Early work by Haralick defined image intensity ridges as “zero crossings of the

first directional derivative taken in a direction which extremizes the second direc-

tional derivative” [58]. This definition identifies ridges as maxima in the pixel in-

tensity curvature, with the curvature defined by local principal directions. A review

of ridge definitions for image processing is provided by [139], and a mathematically

oriented review is conducted in [37]. For the remainder of this thesis, the term ridge

is considered to mean either a ridge or valley feature. The distinction between these

two terms is based upon arbitrary interpretation of pixel intensity data, specifically

which extreme of the representable pixel values should be interpreted as the most

positive in a coordinate system.

When considering grid lines as intensity ridges, as shown in Figure 3.4(d), it is

apparent that extraction of the ridge feature naturally detects a grid line centre.

Inherent line-centre detection removes the need for approximation from indirect data

such as edges.

As in the case of edge detection, a low-pass filtering stage is typically performed

before ridge detection to filter out high frequency noise, and to match detection to

the approximate scale of feature. As changing DOF blur affects edge diffuseness and

apparent line width, selection of a filter variance is no longer obvious. Scale-space

techniques offer a solution, and are reviewed in Section 3.3.

49

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Original image region. (b) Negative pixel intensity.

(c) Three dimensional view of intensity ridge. (d) Coloured view of intensity ridge.

Figure 3.4: Interpretation of image intensity data. Lines appear as intensity ridges
or valleys.

50

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

3.2.3 Corner-based

Image corners can be defined in many ways. One common definition considers corners

to be sharp changes in the directions of edges extracted from the image. Many modern

corner detectors do not rely on edge or other feature data, but instead look for changes

in pixel similarity over small image patches. The Moravec corner detector [108], and

an extension known as the Harris corner detector [59], are two common approaches to

image corner extraction. Figure 3.5 shows various views of a Harris detector applied to

a sample image. Multi-scale (scale-space) corner detection approaches are considered

in literature such as [28, 29, 107, 186, 183, 94]. A comparison of two feature detectors

(KLT and Harris) in the context of GPU acceleration are considered in [160].

Examining close-range grid lines, four corners are present around each line in-

tersection. From these corner points, an intersection centre can be interpolated, as

shown in Figure 3.5. Four difficulties are identified when considering intersection

measurement from corners.

1. Potential asymmetry in detection: The four corners surrounding a grid

line intersection are dissimilar in terms of pose. To accurately interpolate the

intersection, detection of the corners must be perfectly symmetric in terms of

bias. Given the discrete nature of pixel data and small pixel neighbourhood

in which a corner is present, this requirement is difficult to meet with known

corner detection algorithms.

2. Indirect measurement: Basing line intersection measurement on corners is

an indirect approach, so small errors in feature detection have a significant affect

on intersection interpolation accuracy. Furthermore, the corner points are not

detected along the midpoint of the grid line, so detection errors in range from

the feature (closer or further from the intersection) also reduce measurement

accuracy.

3. Noise: Using four corner points to interpolate the grid intersection is a sparse

approach to measurement, increasing susceptibility to noise in the corner detec-

tion process. This differs from edge or ridge methods, where dense data along

the feature can be used in a data fitting formulation.

51

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Image region with strongest Harris corner
responses overlaid.

(b) Close-up of single grid line intersection,
with corners joined by lines estimating the in-
tersection point.

(c) Three dimensional view of Harris corner
metric response around a single grid line in-
tersection.

(d) Top view of Harris corner metric response
around a single grid line intersection. Lighter
shading indicates a more positive response.

Figure 3.5: Harris corner detector [59] applied to a sample image region. In the Harris
detection, the Gaussian standard deviation was σ = 1.5, and a sensitivity factor of
k = 0.04.

52

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

4. Very diffuse line edges: Highly DOF blurred and thus diffuse lines are not

amenable to similarity-based corner detection because the signal to noise ratio

becomes small. The magnitude of peaks in corner response metrics become less

prominent and difficult to distinguish from, for example, lighting variations.

3.2.4 Junction-based

Junctions are naturally defined by the intersection of other features such as edges

or ridges. Many classifications exist, including “T-” and “Y-junctions”. Grid line

intersections can be considered as either a grouping of four coincident “T-junctions”,

or as a single instance of an “X-junction”. Two general classes of approaches have been

used for junction detection in the literature: First are template matching approaches

such as [120], and second are feature-based approaches that consider intersections

of other features such as described by [125]. A scale-space approach for multi-scale

junction detection is considered in [91].

Figure 3.6 shows sample output from a scale-space junction detection approach

based on [91], with the intention of illustrating T-junction detection in the context of

grid measurement.

T-junction detection is similar to corner extraction in that sparse data, in this case

four data points, are used to interpolate the line intersection location. Junctions have

a significant advantage over corners, however, as errors in range from the intersection

point do not affect the interpolation accuracy. Such range errors can be caused, for

example, by slightly varying DOF across the intersection leading to differing scales

of detection. Detected junctions are aligned with the grid line centre, so intersection

measurement is invariant to scale-induced ranging errors.

When considering T-junctions, the grid line intersection is interpolated from only

four data points. This sparse data (compared with ridge or edge fitting) cannot

directly be used to compensate for curvature in the line.

53

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) T-junction metric plot around a grid intersection.

(b) Interpolation of grid line intersection from surrounding
T-junctions.

Figure 3.6: Sample junction detector output.

54

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

3.2.5 Thresholding and Skeletonization

An alternative approach to intersection measurement involves thresholding the image

[117, 136] to produce a binary mask indicating presence of a grid line. A skeletoniza-

tion process can then be applied, and the resulting representation used to locate grid

intersections through parabola fitting or template matching. A survey of skeletoniza-

tion (thinning) approaches is provided by [83]. Although dense data skeletons are used

in the interpolation, the difficulty with such techniques is in the initial thresholding

and binarization process. Some algorithms in the literature such as [31] address direct

skeletonization from images, without first thresholding or binarizing the image. In the

presence of DOF blur and varying lighting conditions, coupled with the potentially

unimodal greyscale histograms of the metal samples (as observed by [167]), adaptive

thresholding techniques are typically not reliable enough to consistently detect the

grid lines. In DOF blur, asymmetric thresholding of opposing line edges biases the

skeletonization result, direcly leading to measurement error.

3.3 Scale-space

3.3.1 Introduction

As described previously, close-range imaging generates a variety of challenges that

complicate feature measurement. Varying blur and changing range to target manifest

as change of size or scale of the imaged grid lines. The apparent line width changes

continuously within and across images, so feature detectors cannot be matched to a

scale in advance through a priori information. A natural solution to feature detection

in these conditions is to consider multi-scale image processing techniques. A number

of multi-scale approaches have been explored extensively in the literature including

pyramid representations [102], wavelet [103] and fractal analysis [123], and scale-space

techniques. Scale-space is chosen for the grid extraction process because it forms a

framework within which different feature detectors can be applied, and is adaptable

to a variety of grid features without significant rework.

A scale-space representation of an image is formed by embedding the pixel data

into a one-parameter family of derived signals, as described by the early literature

55

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[176, 76]. The basic idea behind a scale-space representation (in the context of this

work) is that a two-dimensional image is transformed into a discrete three-dimensional

data set, with the added dimension controlling the scale below which feature responses

are in some manner suppressed. In this way, at higher scale levels in the data set,

feature detectors can locate larger scale-features as opposed to the stronger responses

caused by small scale structures. The parameter t ∈ ℜ is known as the scale parame-

ter, with increasing values indicating an increase in the scale at which corresponding

features are measured.

To be useful, a scale-space must not enhance noise or generate singularities with

increasing scale parameter [76], and should therefore lead to simplification of the

image structure as scale increases. A variety of requirements have been specified for

the definition of a useful scale-space, as summarized by [92], including homogeneity

and isotropy. For the continuous case, it has been shown in numerous works that

the unique kernel exhibiting the required linear scale-space properties is the Gaussian

function [5, 45, 89, 181].

A basic scale-space is defined on an image f as:

L(x, y; t) = g(x, y; t) ∗ f (3.1)

where g represents a two-dimensional Gaussian kernel with variance σ2 = t:

g(x, y; t) =
1

2πt
e−

x2+y2

2t (3.2)

The notation L(x, y; t) denotes spatial location (x, y) in pixel coordinates, at scale

level (variance) t pixels2. Derivatives of this scale-space are defined as:

Lxαyβ(x, y; t) = δxαyβL(x, y; t) = gxαyβ(x, y; t) ∗ f (3.3)

where α and β define the order of differentiation in the x and y image dimensions

[89]. This definition provides the property that the Gaussian smoothing operator and

derivative operator commute as:

δxαyβ(g ∗ f) = (δxαyβg) ∗ f = g ∗ (δxαyβf) (3.4)

56

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Since convolution in the spatial domain is equivalent to multiplication in the

Fourier domain, the question arises of the best domain in which to generate the scale-

space. Florack [42] has shown that Fourier domain formation is more accurate for

small spatial scales, while spatial filtering provides better accuracy at larger scales.

A formula is derived to determine the scale at which this division occurs. In terms

of computational complexity, the Florack accuracy results are opposite to the de-

sired behaviour for computational load. Fourier domain computations are typically

preferred for large scale convolutions in terms of computational efficiency, whereas

the Florack results prefer spatial filtering for improved accuracy with large support

kernels.

A key scale-space concept is the idea that an image is filtered at multiple scale

levels, as opposed to just a single filter variance level as is common in preprocess-

ing for standard feature detectors like the Canny operator. By filtering at multiple

levels and considering the collection of progressively blurred images as slices of a

three-dimensional space, the image may be considered at all of the scale levels simul-

taneously, rather than as a collection of unrelated images [76].

An alternative view of the scale-space formulation is as the solution to the diffusion

equation [92]:

δtL =
1

2
∇2L (3.5)

subject to the initial condition:

L(x, y; 0) = f(x, y) (3.6)

The diffusion equation interpretation of scale-space filtering motivates some solutions

for application to discrete image data.

Early work to apply linear Gaussian scale-space operators to discrete pixel data

utilized discrete (sampled) approximations of the continuous Gaussian, but it has

been shown that under this process the scale-space conditions do not necessarily hold.

Lindeberg [90] proposed that a natural way to construct a discrete scale-space is to

convolve the discrete signal with a kernel defined by solution of the semi-discretized

57

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

diffusion equation. The result was a discrete filtering kernel, defined as:

T (n; t) = e(−t)In(t) (3.7)

where In are the modified Bessel functions of integer order.

Extending this work and solving some of the open questions, Lim and Stiehl

[88] proposed a generalized discrete scale-space formulation. The resultant discrete

convolution kernel is separable and least rotationally asymmetric when expressed

in terms of spatial derivatives. The convolution kernel for each dimension, with a

smoothing parameter step size of ∆t = 1
3
, is:

k = [
1

6

2

3

1

6
] (3.8)

An alternative Gaussian-derived scale-space generating kernel that offers reduced

computational cost, while preserving some important properties of the Gaussian, is

presented in [131]. B-spline kernels for scale-space generation are considered in [126],

which also describes a link between scale-space and wavelet techniques.

3.3.2 Feature Detection

After generation of a scale-space image representation using Equation (3.1) or the

equivalent, feature detectors may be defined that operate within that space. An

introduction to scale-space techniques in the context of image analysis is provided

by [134]. A significant portion of the work in this area utilizes differential invariants

and the detection of differential singularities [80, 43, 44]. Differential invariants are

employed primarily to provide rotational and scale invariance of the feature detector,

and differential singularities such as zero crossings of the differential invariants form

the basis of feature detection.

Automatic Scale Selection

Scale-space is a multi-scale representation, so geometric feature detectors locate the

same feature at multiple scales throughout the space. A method is therefore required

to choose the scale at which the feature is best localized spatially. Lindeberg [93, 10,

58

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

95] proposed that local maxima over scale of combinations of normalized derivatives

could produce an automatic scale selection formulation. He then further proposed

that normalized spatial derivatives be formed in terms of a γ-parameter to control

the scale selection for specific feature detectors.

3.3.3 Scale-space Ridge Detection

Grid lines to be detected in the images are treated as intensity ridges. A brief analysis

of ridge behaviour in scale-space is presented by [20]. In the context of scale-space

ridge detection, a coordinate system (p, q) can be defined at each pixel in which the

axes are parallel to the local principal curvatures of the image intensity [93]. Using

non-maximum suppression, a condition of locally maximal intensity in the principal

curvature direction can be defined in the local coordinate system as:

Lq = 0 and

Lqq < 0
(3.9)

Equation (3.9) can be rewritten in terms of its spatial derivatives, and used to

define ridges at a specific scale level. Since the same ridge may be detected across

multiple scales, a feature strength metric is used. The definition of a ridge is extended

to include the requirement that this feature strength metric is maximum with respect

to the scale parameter. Multiple ridge strength measures have been proposed by

Lindeberg [93], one of which is the absolute value of the principal curvature. Ridges

in scale-space may thus be defined by:

Lq = 0

Lqq < 0

δt(εnormL(x, y; t)) = 0

δtt(εnormL(x, y; t)) < 0
(3.10)

where εnormL(x, y; t) is the scale-normalized ridge strength metric. The intersection

of the conditions defined in Equation (3.10) are interpolated to provide a sub-pixel

estimate of the ridge location within the image plane.

The conditions in (3.10) form two isosurfaces through the scale-space. Where

the ridge definition isosurface meets the scale selection surface, a ridge is defined.

59

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 3.7: Small sample of the discrete scale-space organization (2 × 2 pixel image
with 3 scale levels). The filtered image at each discrete scale level is coloured uniquely
in the diagram, and all cube vertices represent pixel centres at a specific scale level.

Interpolation of surface intersections in the discrete three-dimensional scale-space can

be accomplished using techniques based on the marching cubes algorithm [96, 161].

GPU-based acceleration of the marching cube algorithm is described by [70]. A survey

of related literature is provided by [109], and a performance analysis of isosurface

extraction algorithms is performed in [156].

The interpolation and intersection of metric zero isosurfaces is implemented in this

work using a cube interpolation model, similar to the marching cubes algorithm. The

interpolating cube is formed with adjacent image pixels at each scale level forming

the vertices of each horizontal face (top and bottom faces of the cube). The vertical

axis represents a step between scale levels, with one discrete scale level on the top

face of the cube, and an adjacent scale level at the bottom face.

A small block of the discrete scale-space is illustrated in Figure 3.7, and a similar

block with illustrative ridge segments is shown in Figure 3.8. The true scale space is

much larger than the 2× 2× 2 block shown in the figures, but the organization of the

interpolating cubes is representative. Interpolation of ridge segments from isosurface

intersections occurs in each block of the scale space, with at most one ridge segment

passing through a single block.

60

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 3.8: Sample 2× 2× 2 block of interpolating cubes with sample ridge segments
inside the cubes. The points where the ridge segments pierce the sides of a cube are
interpolated, and connected to form continuous ridges.

Computation of the metric values required by (3.10) are performed at each cube

vertex in the discrete scale space, as the vertices are by definition located at the

filtered pixel centres. Zero crossings of the metric values between cube vertices are

interpolated (along the cube edges), and when two edges of a cube face contain zero

crossings, a line is considered to connect them. This line is an approximation of

where a corresponding metric zero isosurface cuts through the face in the scale-space.

Where both metrics contain zero crossing on a single interpolating cube face, and if

these crossings intersect, then a ridge point is defined. When two faces of a cube

contain ridge points, then a ridge segment is considered to connect these points, and

is an approximation of where the conditions of Equation (3.10) have met within the

cube volume.

A view of a single interpolation cube is shown in Figure 3.9. The metric isosurfaces

defined by the conditions in Equation (3.10) are shown as interpolated on the cube

faces (lines coloured red and blue). Intersection of the isosurfaces is represented as

a line between two of the cube faces (coloured green). Ridge segments formed in

adjacent cubes are subsequently linked together to form a continuous ridge.

61

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 3.9: Isosurface intersections with the sides of an interpolation cube - shown as
(red and blue) lines on cube faces. The interpolated surface intersection that forms
the ridge segment is shown traversing between two cube faces (coloured green). The
cube vertices are formed by adjacent pixel centers on the corners of a horizontal face,
and a step between scale levels forms the vertical axis.

62

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c)

Figure 3.10: Ridge extraction: (a) Zoomed view of unfiltered ridges; (b) Ridges after
filtering; (c) Close-up of fitted parabolas (light/yellow lines) and corresponding grid
intersection point.

63

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Ridge Filtering and Parabola Fitting

Figure 3.10 shows the sequence of high level steps used to obtain the grid intersection

points from raw ridge data. In Figure 3.10(a), a sample of unfiltered ridge data is

shown. Between ridge lines, a substantial amount of noise is detected because well

defined ridges are not present. Figure 3.10(b) shows the ridge lines after a multi-

step filtering process (described in Chapter 4). The filtering is based upon scale-level

gradient because true grid lines do not vary sharply in focus, and curvature-based

filtering is used to eliminate sharply curved (non-grid line) structures.

To interpolate the grid intersection points, a search is performed in the neighbour-

hood around the end of each detected grid line segment to find the closest neighbour-

ing ridges. Groups of four grid lines are then divided into pairs based upon similar

direction in the image plane, and least squares parabolas are fitted to these pairs of

lines. Parabolas are chosen because they can conform to the curvature of deformed

surfaces. Figure 3.10(c) shows the detected ridge points and overlaid parabolas for

a typical grid region. The intersection of these parabolas is computed, and taken as

a sub-pixel estimate of the line intersection. The parabola fitting and intersection

process is described in more detail in Chapter 4.

The proposed grid intersection detector extracts ridge points at an inherently

sub-pixel level spatially, and to a sub-discretization level in the smoothing parameter

dimension. Dense data along a ridge is generated in the form of multiple interpolated

points, reducing the effect of detection artifacts and image noise when sub-pixel grid

intersections are estimated through parabola fitting.

3.3.4 Computational Complexity

The scale-space computational workload increases linearly with the image size and

number of scale levels. To provide a concept of the workload, the separable convolu-

tion required for scale-space generation can be considered. To obtain a scale filtering

step of ∆t = n pixels2 based on Equation 3.8, a symmetric kernel of size 1 + 6n

is used, formed through repeated convolution of a base kernel as described further

in Section 4.2.2. For this example, two approaches are considered to convolve this

kernel with actual image data. First, a Fused Multiply-Add (FMA) can be used at

64

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 3.1: Convolution Operation Total per Second (15 fps)

Image Size Discrete Scales ∆t
Approach 1 Approach 2
FMA (Gops) Multiply (Gops) Add (Gops)

1024× 768

8 1 1.32 0.76 0.57
8 3 3.59 1.89 1.70
8 6 6.98 3.59 3.40
16 1 2.64 1.51 1.13
16 3 7.17 3.77 3.40
16 6 14.0 7.17 6.79

2448× 2048

8 1 8.42 4.81 3.61
8 3 22.9 12.0 10.8
8 6 44.5 22.9 21.7
16 1 16.8 9.63 7.22
16 3 45.7 24.1 21.7
16 6 89.0 45.7 43.3

each kernel element, leading to 1 + 6n operations for each convolution. After both

horizontal and vertical convolutions are performed, and assuming that the scale-space

contains m scale levels, (2 + 12n)m FMA operations are required per image pixel.

A second approach exploits the observation that the convolution kernel is sym-

metric, meaning that a pixel value will be multiplied with the same coefficient twice

by neighbours on opposite sides, but the same distance away. If intermediate data

storage is available, the result of the first multiplication can be buffered for use by

the second instance. In this case, 1 + 3n multiplies and 3n additions are necessary.

With m scale levels and two dimensional convolution, (2 + 6n)m multiplies and 6nm

additions are required per pixel.

Table 3.1 shows the operational totals required for convolution using both of

the approaches (FMA and Multiply/Add), for various image sizes, number of scale

levels, and interscale filter variance (∆t). Video processing at 15 frames per second

is assumed, and the image resolutions chosen correspond to a 0.8 Mpixel Point Grey

Research Dragonfly camera, and also a 5 Mpixel Point Grey Grasshopper 2 camera.

Considering a (currently) high end Intel i7-975 quad-core processor, with a the-

oretical single precision capability of 110 GFLOPS (extrapolated from Intel export

compliance metrics), the convolution phase of scale-space generation produces a sub-

stantial workload. Data movement is typically the major bottleneck when attempting

65

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

to achieve theoretical FLOPS performance on a modern CPU, and as such signifi-

cantly reduces the effective processor capability. With inclusion of the metric value

computations, isosurface intersection and ridge extraction, plus data capture and

operating system activity, CPUs do not currently meet performance or scalability

requirements.

To enable grid line intersection measurement at video frame rates, with a sufficient

performance margin for practical implementation, Chapter 4 describes acceleration

of the algorithm using GPU hardware.

3.4 Summary of this Chapter

Feature detection approaches have been considered for the measurement of grid line

intersections in the presence of close-range DOF blur. A scale-space ridge based

approach has been proposed for grid intersection extraction from close-range video se-

quences, allowing for dense data parabola fitting, and operation in changing range/blur

conditions. Although ridge detection enables close-range grid line measurement, it is

computationally intensive and impractical at video frame rates using a conventional

CPU.

66

Chapter 4

GPGPU Accelerated Grid Line In-

tersection Measurement

Scale-space ridge extraction enables measurement of grid line intersections in close-

range images. Computational intensity, however, makes the approach unsuitable

for video-frame rate processing using commodity CPU hardware. This chapter be-

gins with a review of GPU hardware in the context of general purpose computation,

and then describes the proposed parallel formulation of the scale-space algorithm for

GPGPU acceleration. The parabola fitting and intersection approach is described,

and results from implementation, including timing and accuracy experiments, are

presented.

Please note that some material in this chapter has been previously published in the

Journal of Physics: Conference Series [74]1, Journal of Computer Aided Design and

Applications [73], CCECE Conferences in 2007 [71] and 2008 [72], and other aspects

have been submitted to the IEEE Transactions on Instrumentation and Measurement.

4.1 GPGPU

Graphics processing units have evolved rapidly in both design and programmability

since approximately 2003 [111]. Originally with memory and processing pipelines

designed exclusively for graphics rendering, there has been a move towards general

1Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

67

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(non-graphical) application of the memory and processing resources. Current devices

have enabled General Purpose GPU (GPGPU) computing through evolution of both

the device architecture, and the exposed programming interfaces. A good description

of the evolution of GPU design and programming techniques is provided by [119].

Early work in GPGPU programming attempted to masquerade general compu-

tational tasks as graphics-oriented vertex and fragment shaders [87, 65, 82, 15]. A

good survey of these early techniques is provided by Owens et al. [118]. Computer vi-

sion using fragment shaders is considered in [47], with implementation of a projective

motion tracking algorithm. Evolution during recent years has produced the current

generation of GPU programming interfaces, including the Compute Unified Device

Architecture (CUDA) for NVIDIA hardware, and the emerging OpenCL which is

compatible with both AMD and NVIDIA graphics hardware (as well as other non-

GPU platforms). A DirectCompute interface is available within Microsoft Windows

through the DirectX API, but is bound to that platform. Within the current program-

ming paradigms offered by CUDA and OpenCL, the GPU is treated as a coprocessor,

with the CPU orchestrating overall data movement and processing flow.

Computational speedups obtained through GPU processing, compared with CPU-

only implementations, are often reported with up 1000 times acceleration (such as

[128]). Lee et al. [86] performs a detailed analysis of multiple algorithms alternately

optimized for both CPU and GPU, and concludes that the performance gap between

modern CPUs and GPUs is closer to 2.5 times. The CPU and GPU chosen for this

comparison, however, are not of the same technology generation, with the GPU being

older in terms of fabrication technology (65 nm compared with 45 nm) and depre-

ciated by one NVIDIA release cycle. A key factor identified in the discrepancy of

2.5 times versus many reported 100-1000 times GPU speedups is that some reported

acceleration results are with respect to unoptimized (or poorly optimized) CPU im-

plementations. This observation is consistent with experience in the field, where it

appears relatively common for programmers to spend large quantities of time opti-

mizing GPU code, while neglecting equivalent levels of optimization on the CPU-side.

Multiple published papers report GPU speedups with respect to Matlab implemen-

tations, which are generally interpreted scripts and not designed for computational

performance. A comparison of optimization techniques and bottlenecks in modern

68

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

CPUs, and performance comparison against GPUs in the context of Computed To-

mography (CT) reconstruction, is provided in [163].

For comparison purposes, at the time of writing the current generation NVIDIA

GPU (GTX 580, 40 nm fabrication) has a raw single precision compute capability of

1.58 TFLOPS and a global memory access bandwidth of 192.4 GB/s. The current

generation of Intel processors that are price competitive with the GTX 580 (not

including motherboard), such as the i7-970 (32 nm fabrication) have an approximate

single precision capability of 160 GFLOPS, and a memory bandwidth of 25.6 GB/s.

As described in the following sections, CPUs and GPUs are optimized for different

types of workloads, leading to the apparent performance gap between the platforms.

GPU results described in this thesis are based on an NVIDIA GeForce GTX 480

graphics card, which utilizes the NVIDIA GF100 architecture. A second revision of

the architecture (GF100B/GF110) has been released, but is fundamentally consis-

tent with the GF100. The following sections introduce concepts related to CUDA

programming and design, but are not intended to be a replacement for the detailed

CUDA programming guides [112, 110, 113, 111, 115] or textbooks [75] on the subject.

4.1.1 GF100 Architecture

The modern CPU is designed for optimal performance from a single or small number

of threads, and therefore includes advanced caches, branch prediction, and out of

order execution among other technologies [63] that require significant chip area. In

contrast, a GPU dedicates less chip area to predictive or dynamic scheduling features,

and instead provides large numbers of simple processors with high bandwidth access

to memory. The NVIDIA GTX 480 contains 480 processor cores, compared with 6

cores in the Intel i7-970.

NVIDIA has defined their architectural paradigm as Single Instruction Multiple

Thread (SIMT). The idea behind SIMT is that a single instruction unit dispatches an

instruction to a group of processors, which individually execute that instruction on

differing data. With a single instruction unit driving parallel processors, it is apparent

that the instructions performed on the parallel data must be identical. Divergence

of program flow within a single grouping of processors (with single instruction unit)

causes inefficiency as all cores are forced to perform all execution paths required by

69

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

threads in the grouping. The SIMT paradigm differs from the more conventional

Single Instruction Multiple Data (SIMD) paradigm primarily through the ability to

handle divergent control paths within groups of threads. A grouping of SIMT threads

in CUDA is named a warp, and in current generation devices contains 32 threads. The

threads within a warp should ideally perform exactly the same instruction path, but in

cases where control flow divergence occurs within the warp, the GPU scheduler simply

executes all required paths and masks output from the cores that did not require a

specific instruction. Warp sizing and minimal control flow divergence within warps are

fundamental elements considered when designing and programming efficient CUDA

algorithms.

The low level computational block on a GF100 GPU is an individual processing

core, which contains both a floating point unit and an integer ALU. The cores are

grouped together within a Streaming Multiprocessor (SM), which is a cluster of 32

cores and supporting functional blocks. Figure 4.11 shows a logical view of a single

SM, of which there are 15 in the GTX 480 GPU. Four special function units are

shared by the 32 cores to perform transcendental functions such as trigonometry and

square roots, and 16 load/store units allow memory addresses in cache or off-chip

DRAM to be computed for use by 16 of the cores in a clock cycle. A register file

provides single cycle memory to the cores, and is local to the SM. A key feature

of the GF100 architecture (compared with previous generations) is presence of two

scheduler/instruction dispatch units within a single SM. The instruction units each

serve 16 of the 32 processor cores, allowing two different SIMT sequences to be in

flight simultaneously within an SM. In this way, the schedulers can make efficient use

of the resources for many workloads, for example scheduling half of the cores to use

the available load/store units, while the remaining cores utilize the special function

units or perform local arithmetic computations.

Execution Model

From a programmer’s perspective, internal structure of a multiprocessor core is trans-

parent. Instead, an execution model defines the relative layout of individual threads.

Figure 4.12 shows the logical thread hierarchy which in turn drives the structure of

CUDA work partitioning and data sharing. The fundamental work unit is a thread

70

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 4.11: Block diagram of the NVIDIA GF100 Streaming Multiprocessor.
Adapted from NVIDIA [113].

71

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

which performs a single stream of instructions, and is the finest-grained level of the

hierarchy. Threads are grouped into blocks, which can be up to three-dimensional

(logical address), with each thread receiving a unique address in the block. The blocks

are integrally mapped into multiprocessors (SMs), and although more than one block

may be physically scheduled into an SM, from a logical perspective the thread block

has exclusive use of the multiprocessor. The blocks, in turn, are organized as a grid

which can be up to two-dimensional. Blocks within the grid are logically dispatched

to different multiprocessors, which leads to inter-thread communication ramifications

as described later. With the dimension of the thread blocks defined as (DX , DY , DZ),

a block contains DX ×DY ×DZ threads. To be physically mapped into a multipro-

cessor, the thread block must not require more resources than are available within

the SM. Especially in terms of memory resources, thread block partitioning plays an

important role in CUDA algorithm design.

Figure 4.12: Logical organization of threads, thread blocks, and block grid in NVIDIA
GF100 architecture for a block of dimension (2, 5, 1), and a grid of dimension (3, 3).

The GPU acts as a co-processor to the CPU in most implementations. Within

CUDA applications, the CPU is responsible for transferring data between CPU-side

and GPU-side memories, and for launching sets of threads for execution on the GPU.

After launching a specific grid of threads on the GPU, the CPU can either block upon

completion of the work, or can initiate other operations such as CPU-side processing

72

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

or memory transfers. Current generation devices allow memory to be copied concur-

rently with GPU computation, and multiple kernels can be launched simultaneously

on the GPU hardware.

A program sequence that executes on the GPU is known as a kernel, and although

it may execute as thousands of concurrent threads, program code that defines the

kernel has a single definition. Within the program code, instructions must inherently

compute the addresses of data to process based upon the unique identification of

the thread within a thread block, and the block identification within the grid. Each

thread of a running kernel therefore has a unique identification in terms of its location

in the logical thread-block-grid structure, which it uses to identify the memory that

should be accessed. Logical address in the thread hierarchy is the only differentiating

factor between concurrent kernel threads running on the GPU.

Memory Architecture

A critical driver during algorithm design is efficient use of the various memories avail-

able to the GPU cores. Inefficient or naive use of data memory can generate inferior

performance, negating any benefit from GPU implementation. High Performance

Computing (HPC) applications on the CPU may consider cache line sizes and other

memory-centric optimizations during programming, but on the GPU, design of an

algorithm with consideration to efficiencies and constraints imposed by the memory

hierarchy is critical for performance.

Figure 4.13 shows the scope of the primary memories used by most GPGPU

applications. Individual threads have access to registers (Figure 4.13(a)), which are

32-bit memory locations and are private to the specific thread. Registers are accessible

in a single clock cycle, and reside in the register file of the local SM. The register file

is finite, so if the collection of threads in flight within an SM requires more register

resources than are available, usage spills into slower global memory (typically captured

by the L1 cache in current devices).

Thread blocks, as described in Section 4.1.1, have access to on-chip “shared mem-

ory” resources of the multiprocessor (Figure 4.13(b)). Shared memory is consistent

in terms of address space and content across all threads in a specific block, so pro-

vides the ability for communication and data sharing. The scope of shared memory is

73

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c)

Figure 4.13: Inter-thread data sharing hierarchy in NVIDIA GF100 architecture for
a single thread (a), a single thread block (b), and the block grid. Adapted from
NVIDIA [113].

strictly restricted to a single thread block, and provides no communication ability be-

tween blocks or with the CPU. Even when multiple thread blocks are scheduled onto

the same SM, each is given its own independent shared address space. Inter-thread

communication and data sharing are key design considerations when determining

thread block dimensions, and drive fundamental decisions in GPGPU algorithm de-

sign and implementation. From a practical perspective, shared memory appears as a

user managed cache sitting between a thread block and global memory.

Threads within a block can communicate using shared memory, but communica-

tion between blocks requires an additional memory space known as the global memory

(4.13(c)). Global memory is an off-chip DRAM resource, and provides a unified mem-

ory space that all threads on the GPU access. Global memory is also accessible by

the CPU host system across the PCI-Express bus, and is therefore the primary means

74

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 4.14: NVIDIA GF100 memory hierarchy from perspective of a single thread.
Adapted from NVIDIA [113].

through which data is transferred between the CPU and GPU systems. Because it

is an off-chip resource, global memory has significantly larger access latency (400-800

clock cycles [112]) than on-chip register or shared memory.

Additional memories are available to GPU kernels such as read-only constant

and texture memory, with texture memory providing certain types of interpolation

typically used by graphics engines. Further information about these memories and

the subtle advantages that they provide in certain access scenarios is available in the

NVIDIA literature [112].

The GF100 memory hierarchy is shown in Figure 4.14 from the perspective of cache

structure. This structure has evolved from previous GPU generations, and provides

greater performance for kernels that require irregular memory access patterns. A

768 KB unified L2 cache provides an interface to the external DRAM, and an L1

cache local to each multiprocessor increases performance for nonuniform memory

access patterns and register spillage.

Many details of the memory systems in the GPU are not released by NVIDIA.

Work to micro-benchmark specific aspects of the internal architecture such as memory

latencies, pipeline depths, synchronization techniques, and cache details are presented

75

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 4.2: GTX 480 Memory Summary. Adapted from NVIDIA [110].

Memory Location Cached Read/Write Scope Lifetime

Register On-chip - R/W 1 thread Thread
Local Off-chip Yes R/W 1 thread Thread
Shared On-chip - R/W All threads in a block Block
Global Off-chip Yes R/W All threads + CPU Host

Constant Off-chip Yes R All threads + CPU Host
Texture Off-chip Yes R All threads + CPU Host

in, for example, [177, 170].

Table 4.2 summarizes the memory available to CUDA kernels, including their

scopes and lifetimes.

Memory Access Patterns

Early GPU memories were designed to stream data in graphics rendering tasks, and

not for more general access patterns such as gather/scatter common in general pur-

pose computing. Recent GPUs have significantly relaxed the access requirements

for efficient use of memory, but a number of constraints still remain. The primary

driver behind memory access patterns is that physical memory is organized into banks

(shared memory) or partitions (global memory). When threads in a warp need to

simultaneously access parallel data that resides in a single physical bank, accesses

to the memory may be serialized leading to loss of performance. Inefficient memory

access patterns can immediately lead to an order of magnitude decrease in apparent

GPU performance.

In the GF100 architecture, generalized L1 and L2 caches substantially simplify the

access patterns required to utilize memory efficiently. Shared memory bank conflicts,

however, should be explicitly avoided during programming. Global memory partition

camping, likewise, can have an effect on overall kernel performance. Describing the

details of meeting these requirements is beyond the scope of this thesis, so the reader

is referred to [112, 115, 110]. Correct structuring of kernel and thread block layout,

and techniques such as data padding and alignment modifications can produce large

improvements in kernel performance.

76

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Scalability

Multiprocessors form the basic computational block in the GF100 architecture, and

are independent from one another except through the unified global memory. This

independence is an important factor in performance scalability, as adding additional

SMs to a system through graphics card updates directly scales the performance with

number of multiprocessors, and requires no change to the CUDA code. Improvements

in SM capability with new GPU revisions allow additional blocks to share a multi-

processor, providing a transparent increase in performance. Scalability across GPUs

is simplified by the explicit decomposition of a CUDA program into thread blocks,

which communicate through global memory. The explicit computational structure

greatly enhances hardware scalability, as independent work units are clearly defined.

4.1.2 Applicability of GPGPU

Not all applications are suited for implementation on GPGPU hardware. Key at-

tributes for GPU applications include arithmetic intensity, and ability to formulate

the work processes in the paradigm of many independent SIMT threads. Compar-

isons of GPU, CPU, and programmable logic accelerators are explored in [22, 86].

An analysis of CPU and GPU performance for comparable power footprints is per-

formed by Vuduc et al. [171], with the interesting conclusion that for “moderately

irregular” compute patterns, GPU performance is comparable to addition of one or

two multicore CPU sockets. The results were based on an NVIDIA GTX 285 in

which memory access pattern requirement were strict, unlike the significantly relaxed

requirements present in the GTX 480 (GF100) architecture. Cache improvements

in the current generation of NVIDIA GPU are designed to increase performance for

irregular memory access patterns, so should affect the Vuduc et al. conclusions.

Algorithm suitability for parallel GPU implementation is considered in [68], with

some algorithms characteristics identified such as ability to separate the workload into

independent work threads. Profiling based upon the intermediate level CUDA Parallel

Thread Execution (PTX) pseudo-assembly language [114] is considered in [23], with

the intent to simplify performance tuning. Aside from the NVIDIA documentation

on performance tuning, literature such as [127, 85] consider techniques for specific

77

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

applications on the GTX 480. Use of GPUs for image processing and computer vision

tasks is considered by [48] as a general inverse rendering problem, [121, 180, 21] for

motion tracking, [101] for image edge detection, and [122, 79] for optical flow.

The GF100 introduced IEEE compliant floating point arithmetic units, and en-

abled double precision processing. For many HPC applications, lack of double pre-

cision floating point was a major obstacle in past device architectures. Although

double precision is currently supported, there is a performance penalty incurred com-

pared with single precision computation. In the professional GPU line based on the

GF100 architecture, such as the NVIDIA Tesla C2050, double precision computation

achieves half the throughput of single precision. In the commercial graphics product

line (GTX 480), double precision performance is reduced to 1/8 of the single precision

throughput. For applications strictly requiring double precision math, this is nearly

an order of magnitude performance penalty.

Considerations for GPGPU Suitability

A multiprocessor can contain up to 1536 threads using CUDA compute capability 2.0,

allowing 15 × 1536 = 23040 threads to be in flight on a GTX 480 GPU. Compared

with the smaller number of actual processor cores (480 cores), the schedulers have

the ability to hide long latency operations such as external DRAM fetches through

hardware multithreading.

Cache-miss global memory latency is on the order of 400-800 clock cycles. Hiding

this latency through multithreading would require significantly more warps than the

48 supported by a multiprocessor. For this reason, GPUs are well suited for applica-

tions with high arithmetic intensity, meaning that for every off-chip memory access,

there should be multiple local arithmetic operations performed. In current hardware,

NVIDIA reports that if each external memory access is accompanied by 15 local

arithmetic operations, then about 40 warps are required to effectively hide a global

memory latency of 600 cycles [112]. For the true range of 400-800 cycles, the number

of required blocks therefore ranges from 27-53 concurrent warps. It is apparent that if

arithmetic intensity drops below 15 arithmetic instructions per global memory access,

the multiprocessors resources are forced to idle while external memory fetches take

78

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

place. The L2 cache appears to address this issue for some workloads, but indepen-

dent stream processing by the SMs may constantly require fresh cache-miss input.

Arithmetic intensity is thus a critical element of algorithm suitability for GPGPU

implementation, with the required level of intensity dependent on the application

specific memory access patterns.

The most frequent reason that a CUDA thread must wait before execution is that

input data is not available [112]. The wait time depends on the source of the pending

data, and for efficient use of GPU resources, there should be sufficient concurrent

threads so that non-blocked threads can perform work while others wait for data. For

stalls caused by register dependence, a thread must wait for a previous instruction to

produce output. The current execution time to complete an instruction is typically

22 clock cycles [112], so presence of at least 22 warps in a multiprocessor is required

to effectively hide register dependence stalls.

Another major cause of stalled threads is the presence of synchronization and

memory fence calls within the kernel. A synchronization barrier causes threads within

a block to stall until every thread has reached the same barrier, and is primarily used

to avoid parallel data hazards in shared memory. To keep the SM compute resources

busy while some threads are stalled at a pending barrier, multiple thread blocks should

be present in the single SM. Synchronization barriers are local to a thread block, so

the presence of multiple blocks can allow the scheduler to reduce idling inefficiencies.

Even with high arithmetic intensity, a multiprocessor scheduler requires concur-

rent warps to efficiently hide latencies in the presence of data dependencies. There

is a complex trade-off required during GPGPU implementation, as additional warps

in a thread block help to hide latency, but also require additional processor memory

resources. To allow multiple thread blocks to coexist within a single SM (helping to

hide synchronization stalls), no thread block should use the majority of multiproces-

sor registers or shared memory. On the other hand, large scale concurrency within a

thread block helps to hide global memory access times through arithmetic intensity,

so larger block sizes and associated memory resources are often desired. Performance

tuning by changing block sizes and memory utilization is typically required to achieve

adequate performance from the GPU.

When considering GPU-based acceleration in the context of an algorithm, it is

79

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

important to incorporate Amdahl’s law into the analysis. The GPU is not suited

for all workloads, so some processing must typically be performed on the CPU. If

acceleration by the GPU does not affect the entire execution time, implementation

effort should be compared to overall speedup. Memory transfers between the CPU

host system and GPU over the PCIe bus have lower bandwidth than local memory

accesses, so it is often advantageous to perform some level of inefficient computation

on the GPU to avoid data transfer between platforms.

GPGPU for Scale-Space Ridge Extraction

Scale-space ridge measurement can extract imaged grid lines in the presence of chang-

ing target range and DOF blur, as described by Section 3.3. The need to calculate

and interpolate metric values at multiple scale levels produces a load that is not well

matched to commodity CPU systems at video frame rates. GPGPU acceleration of

the scale-space ridge detection algorithm is described in the remainder of this chapter.

The GPGPU approach is selected for three primary reasons.

1. Commodity hardware: Other approaches to acceleration such as multipro-

cessor platforms or FPGA accelerators are not as easy to procure or maintain

as commodity GPU cards. In terms of raw computational potential per dollar,

GPUs have substantial advantage over CPU systems.

2. Efficient mapping to GPU architecture: Scale-space ridge extraction per-

forms arithmetically intense computations in well defined spatial neighbour-

hoods. The workload can therefore be divided into independent processing

blocks that map efficiently into GPGPU hardware.

3. Scalability: A GPU implementation scales to higher resolution cameras for

improved accuracy, and higher frame rates for increased scanning speed (faster

camera motion). Additional graphics cards or improved multiprocessors imme-

diately lead to speedup, without software rework. Adding or upgrading GPUs

in an industrial system is typically easier than a CPU upgrade, as the GPU

and its supporting hardware are independent peripherals not tied to operating

system execution. Multiple GPU cards can coexist in current systems.

80

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

4.2 Parallel Framework and Implementation

4.2.1 Algorithm Sequencing and Flow

Figure 4.15: Division of work flow between CPU and GPU for grid line extraction
(reproduced from Kinsner et al. [73]).

Not all workloads are suited for GPGPU implementation, primarily because of

the desired arithmetic intensity and memory access patterns. For this reason, pre-

and post-processing of data on the more versatile CPU can enhance overall system

performance. Figure 4.15 shows the proposed work division and processing flow for

grid intersection measurement. The CPU controls program sequencing, beginning

with calculation of the convolution kernels for scale-space generation. The CPU then

transfers a video frame to global memory on the GPU, and dispatches a sequence of

81

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

kernels to process the data. Upon completion of the ridge linker kernel, the resultant

data is transferred back to host system RAM where the CPU performs final process-

ing to form variable length ridges in memory, and to complete the grid intersection

calculations.

4.2.2 GPGPU Processing

Scale-space Generation

The first stage of processing is generation of a scale-space image representation, which

is later used by the feature detector. Scale-space formation requires convolution with

a generating kernel such as (3.8), as described in Section 3.3. The two-dimensional

convolution is separable, so horizontal and vertical phases are employed to improve

efficiency while loading data from global memory into the multiprocessor shared mem-

ories. The convolution operations produces both horizontally and vertically filtered

data at multiple scale levels.

To provide a generic approach that can be applied to varying scale levels in dif-

ferent applications, an intermediate convolution kernel is first produced. Convolution

of data with this intermediate kernel produces a filter operation with variance of 1

pixel2, and is thus named the “unit step kernel”. The original kernel (3.8) produces

a filter variance of ∆t = 1
3
, so self convolution of this kernel with itself is used to

produce the unit step kernel which has a larger support radius than the original.

To obtain an image scale-space representation with scale levels separated by more

than 1 pixel2, the unit step kernel is progressively applied through repeated convo-

lution. Although this leads to additional computational effort and compounding of

single precision floating point errors, it allows a single kernel to be used more generi-

cally, and simplifies the requirements on border apron data where the kernel extends

beyond the active data set near the boundaries. Repeated unit step kernel convolu-

tion produces the effect of a single application of a larger kernel that directly provides

the necessary interscale variance, called the interscale kernel.

An alternative to repeated convolution with the unit step kernel is to produce

a larger support kernel by self-convolving the unit kernel the necessary number of

times, and then applying the larger support kernel to the data in a single step. For

82

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

repeated application of the unit step kernel, the number of accumulate operations per

output pixel is k(2r+1) where r is the radius of the step kernel, and k is the number

of step kernel applications to form the next scale level. The number of required

multiplications is slightly less in the case of the larger support kernel, requiring 2kr+1

multiplications, not including the amortized operations to form the kernel itself. For

an example filtering scale of t = 15 pixels2, the number of accumulation are 105

and 91 respectively. This tradeoff is deemed acceptable for efficiency introduced by

controlled border apron usage (described later).

In a single precision floating point GPU, it is attractive to form the larger support

kernel using higher precision (on a CPU for example) and apply it only once in single

precision, rather than iteratively accruing and compounding single precision arith-

metic errors during repeated convolution. The disadvantage of large support kernel

application is that the size of the kernel depends on the scale differential at which

it is being applied, and hence the GPU instructions that perform the convolution

must be capable of handling kernels of variable size. To reduce GPU code complexity

and allow for better optimization, the approach of repeated small kernel application

is used, with intermediate data stored in single cycle shared memory and all shared

accesses coherent.

The convolution work flow required to generate a complete scale-space represen-

tation is shown in Figure 4.16. Arrows represent the flow of data, and the notation

nx denotes n applications of the interscale kernel, each application of which is com-

posed of m repeated applications of the unit step kernel. Image data is loaded from

global memory and horizontally convolved with the unit step kernel repeatedly until

horizontal filtering at a required scale level has been achieved. This data then takes

two paths: (1) it is stored to global memory as a horizontally convolved scale slice,

and (2) the data is passed back into the horizontal convolution kernel where it re-

ceives additional horizontal filtering to achieve the next larger horizontal scale slice.

When all horizontal convolutions are complete, the vertical convolution kernel loads

the horizontal output from a specific scale slice (from global memory), and performs

the necessary number of vertical convolutions with the unit step kernel to achieve the

required output scale.

83

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 4.16: Convolution for the generation of an n-level scale-space. nx denotes
n applications of the interscale kernel, each application of which is composed of m
repeated applications of the unit step kernel. Grey boxes indicate global memory
storage on the GPU. Figure reproduced from Kinsner et al. [73].

Horizontal Convolution Kernel

The horizontal convolution phase begins with the initial image data, and repeatedly

convolves this data with the unit step kernel, thereby defining the horizontal filtering

operation between any two scale levels. After each set of convolutions (new scale

level), the filtered data is saved to global memory, forming an array of partially filtered

images. Only a single load of the original data from global memory is required to

generate all of the horizontally filtered scales, followed by a write-back of the image

size for each scale level. The intermediate data between horizontal filtering stages

remains resident in the multiprocessor shared memory, avoiding unnecessary global

84

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

memory accesses.

Figure 4.17: Horizontal convolution kernel operating on a single row of the image. A
thread block has fewer threads than the image width has pixels, so it is repeatedly
applied to the image row. A single thread therefore processes multiple pixels in the
image row, improving efficiency.

Figure 4.17 shows the processing strategy used to horizontally convolve each im-

age row. An isolated block of threads is assigned to process each row of pixels in the

image, requiring M thread blocks to process an image with M rows. To optimize

register overhead and to pipeline global memory accesses, a single thread loads and

performs convolution upon multiple (r) pixels within a row. The compiler is directed

to completely unroll the r iteration loop defining a thread’s work on multiple pixels,

removing unnecessary loop overhead. Even with a large unrolling factor, the pixels

handled by iterations of the worker thread are completely independent, so the opti-

mizing compiler or thread scheduler can modify the work flow if necessary to control

register usage. The number of threads in a thread block for an M×N image is there-

fore M
r
, where r is the repeat work factor of a single thread, and where r is ideally

chosen such that the number of threads is an integral number of warps.

Convolution near the image edges requires pixel data outside of the active image

region, so border apron data outside of the image boundary is replicated within

shared memory to eliminate divergent branching and artifacts. Use of the unit step

kernel bounds the number of pixels required in the border apron, but to minimize

idle threads and simplify addressing arithmetic, the apron is defined as a half-warp in

size. Larger support kernels would require a larger apron size, which should ideally

be set to an integral number of warps.

85

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 4.18: GPU-side ridge extraction flow from scale-space to ridge output. Repro-
duced from Kinsner et al. [74].

Vertical Convolution Kernel

The horizontally convolved image data at each scale level is transferred from global

memory column-wise. Vertical convolution is performed in a similar manner to hori-

zontal, including the handling of border aprons. The horizontally convolved data from

earlier GPU processing is treated separately at each scale by repeated application of

the vertical step kernel, as shown by Figure 4.16.

Output from the full convolution at each scale level is stored to global memory

with an artificial image border of 16 pixels around the filtered image periphery. This

storage allows subsequent kernels to access pixel data coordinates slightly outside

of the image border (for derivative approximations) without risk of memory access

violations on the GPU, removing the need for divergent data border checking logic.

The output stored to global memory comprises the fully filtered scale-space image

representation. Figure 4.18 shows the remaining GPU-side processing required to

form ridge output from the scale-space representation in global memory.

Ridge Metric Computation Kernel

The metric computation kernel performs calculations at each pixel and scale level.

The computations are based on Equation (3.10), and derivative approximations are

generated through central difference approximation with coefficients pre-computed

and stored in constant memory. Since the derivative operators utilize data in the

86

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

neighbourhood around each pixel, a border region is loaded into shared memory with

radius large enough to support the highest order derivative approximation required.

Multiprocessor shared memory is not large enough to hold an entire image or the

complete scale-space, so the work must be broken into multiple thread blocks which

each handle a portion of the data.

Thread block sizing involves a trade-off between shared memory usage and re-

dundant loading of apron data. The derivative approximations for a pixel require

a two-dimensional neighbourhood of scale-space data to be available, so for small

thread block sizes, the apron is a significant portion of the data loaded. For the ridge

detector implementation, a 6 pixel border apron is required. Pixels closer to the im-

age edge than the apron size load mirrored data from the boundary apron stored to

global memory by the convolution kernels. The resultant boundary metric values are

invalid, and are rejected as noise later during ridge formation.

Early versions of the CUDA compiler were unable to optimize register usage in

the metric computations, producing kernels that could not be executed because of

register overuse. The solution was to manually decompose the metric equations into

simpler operations, and to place synchronization barriers occasionally in the kernel.

The current generation of CUDA compilers have improved optimization capability,

and combined with increased register resources in the multiprocessors, can directly

compile many term equations into executable code that fits within the SM resources.

The results from Equation (3.10) at each pixel are stored to global memory. The

two conditions in the equation that must be zero are stored as floating point data,

allowing interpolation of the zero isosurfaces in a later kernel. The remaining two

terms of the equation, which simply check for negative curvature, are not stored in

memory. Only the sign of the computation is required for later use, so the sign of

each of the two terms is encoded using flag bits in a single byte data primitive, saving

three storage bytes per pixel (compared with single precision floating point).

Metric Isosurface Intersection Kernel

The metric intersection process is summarized in Algorithm 4.1. The zeros of the

isosurfaces (defined by Equation 3.10) are linearly interpolated along the edges of

each surface interpolating cube. Where multiple zeros exist on the edges of a single

87

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Algorithm 4.1 Ridge Metric Intersection Kernel

Load Data
for Voxels in parallel do

for Three edges originating at interpolating cube origin vertex do
[1] Check for zero crossing of each metric (differing sign at edge vertices)
[2] Linearly interpolate zero crossings on edge
[3] Block on completion of neighbouring cube zero interpolations

end for
for Three faces of cube common to origin vertex do

if Exactly two metric zeros on edges then
Consider the line joining the two zeros
if Both metrics have isosurface intersections on face then

if The metric isosurfaces intersect in a single point then
if Intersect is within the face then

[1] Record ridge intersection with face as i,j,k in local coordi-
nate system

[2] Set the relevant bit in the cube fingerprint
end if

end if
end if

end if
end for

end for

face, they are joined with lines. If interpolating lines connect both metrics, and if

these lines intersect on a cube face, then this is an isosurface intersection point. The

algorithm is an extension of the classic marching cubes process.

To avoid duplicate computation, a single thread on the GPU performs zero point

interpolation for three edges of an interpolating cube (edges which end in a com-

mon cube vertex), as shown in Figure 4.19(a). The remaining edges are processed

by neighbouring threads, and because the relative order of thread execution is not

guaranteed on CUDA hardware, synchronization ensures that all threads have pro-

cessed and stored their associated data before interthread sharing is allowed. To

avoid divergent branching within a thread block, all threads follow similar execution

paths regardless of input, and decisions are made through multiplication of values

with logical comparison results.

88

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 4.3: Conventions used in interpolation cube intersection fingerprint

Face pierced Scale-space axis Fingerprint bitmask

F1 -Z 0x01
F2 -Y 0x02
F3 -X 0x04
F4 +X 0x08
F5 +Y 0x10
F6 +Z 0x20

For each metric, a zero is considered to intercept the edge if the values at opposing

vertices have different signs. When a metric zero is present, the location of that zero

is linearly interpolated along the edge. Results from the three edges are stored to

shared memory, and the thread waits until all neighbours have completed their work.

From any metric zero points on the cube edges, a thread then interpolates intersection

locations on the three faces associated with that cube (F1-F3 in Figure 4.19(b)), and

waits until all neighbours have also finished. Where two intersection points exist

among the six faces of an interpolating cube, these points are joined with a straight

line, and the result is recorded as a scale-space ridge fragment.

Data output volume plays a significant role in this kernel since unnecessary data

storage leads to additional transfers to and from global memory. To reduce the

memory overhead, a maximum of two face intersections are stored for the three faces

being processed by each thread. If more than two intersections are found among the

three faces, then an ambiguous situation is present and no ridge data is recorded.

The storage associated with a single interpolation cube comprises a fingerprint that

denotes on which faces intersections have occurred, and global data that stores the

cube i, j, k data for the position of each intersection on the relevant faces. The

intersection fingerprint is a single byte associated with each interpolation cube, in

which individual bits flag ridge segment intersections with a specific cube face. The

fingerprint follows the bit convention of Table 4.3, and allows later kernels to use a

byte-wise lookup table to quickly determine how many and which faces have ridges

passing through them.

Figure 4.20 shows the raw ridge segment output from the metric intersection

kernel. In the images, colour and height indicate the scale at which a ridge was

89

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 4.19: Metric isosurface intersection kernel. (a) Interpolating cube edges gen-
erated by a single thread (figure adapted from Kinsner et al. [73]). (b) Interpolating
cube labelling convention.

detected. Noise is visible between the grid lines where no valid ridge data is present.

4.2.3 Ridge Linking Kernel

The ridge segments defined between interpolating cube faces must be traced through-

out the scale-space and linked together, forming the output set of full length ridges

that will be used to interpolate grid line intersection points. Ridge detection is based

on image data, so the output does not conform to preset GPU thread block sizes or

memory coalescence requirements. The CPU is better suited to forming the variable

length output ridges, but visiting every interpolation cube in the scale-space to check

for valid segments is a large search space. For an 1024× 768 pixel image with 8 scale

levels, there are over 5.5 million cubes to examine. At 15 video frames per second,

more than 82 million interpolation cubes must be visited and processed per second

just to locate ridges, not including post-processing.

To simplify the task of producing ridge output on the CPU, a GPU-side ridge

linking kernel examines the entire set of interpolation cubes, and generates summary

output that the CPU uses to rapidly locate valid ridges. The summary data must

be traversed by the CPU to determine where valid ridges start, but the search space

is reduced compared with the raw intersection data. In the current implementation,

only 1
4
the number of data elements need be visited by the CPU compared with the

complete space. More significantly, the summary data elements require very little

90

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Ridge segments - straight grid lines and un-
filtered noise between the lines

(b) Ridge segments - height representing the
scale-space scale at which a segment was de-
tected

(c) Ridge segments - straight grid lines and unfiltered noise between the lines

Figure 4.20: Ridge output from a sample image, with colour and height indicating
the detection scale level. Unfiltered noise is detected between the straight grid lines.
Reproduced from Kinsner et al. [74].

91

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

logic to identify valid ridges, as opposed to the logic needed when visiting the original

data. A key assumption in the summary process is that ridges are long compared

with the thread block size used by the summary kernel. With this assumption, valid

ridges span more than one thread block, and therefore penetrate the boundary/sides

of a block that processes a portion of the interpolating cube set. Ridges that do not

span multiple thread blocks are too short to be valid grid lines, and these short ridges

can therefore be rejected by the kernel. Such short ridges are caused by, for example,

small scratches or dirt on the imaged surface. For reference, thread blocks in the

implementation are 8× 8 pixels (×7 scale steps), whereas the distance between grid

lines in an image is one the order of 100 pixels. A valid ridge should therefore traverse

at least 10 thread blocks between intersections with perpendicular grid lines.

The ridge linking kernel examines blocks of interpolating cubes and determines

which boundary faces (periphery of the block) have ridges passing through them.

Any identified ridges are then traced through the block to determine whether they

continue to another block boundary, or terminate internally. Summary data is then

generated on the border, and is later used by the CPU to identify where ridges begin

and end. The border data is comprised of a partitioned array of structure primitives

(int2) containing integer values. A logical partition separates the array into a row

space and a column space, with a one-to-one mapping between the thread block

border faces and the border summary data.

In the GPGPU implementation, the ridge linker operates on blocks of size 8×8×7

to control shared memory usage. Figure 4.21(a) shows the border data as it surrounds

a single block of interpolation cubes at a single scale slice. There are many blocks

of cubes to be processed, so the border data forms a grid pattern separating them,

with each exit from a block having associated with it a unique border data location.

The organization of the data in global GPU memory is shown in Figure 4.21(b),

and Table 4.4 presents the storage convention used within the border data output.

The storage convention allows the CPU to rapidly traverse the data set and identify

valid ridge start points within a block, from which the algorithm can trace out and

record the complete ridge path. Within Table 4.4, whenever a value is positive the

magnitude specifies the global address of the ridge start location. Each interpolating

cube in the space has a unique address, organized in row major form.

92

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 4.21: Linker kernel data storage conventions.

Table 4.4: Conventions used in Border Summary Data

X Y Interpretation

0 0 No interesting events
+ 0 Ridge starts on boundary and ends within block
- 0 Ridge starts on boundary, continues into far block
+ + Ridge starts and ends within the adjacent blocks
+ - Ridge begins in neighbour, continues into far block
- - Ridge passes through these blocks

93

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

4.2.4 CPU Post-processing

Variable Length Ridge Output

Upon completion of the GPU-side ridge linking and border data summary process,

data is transferred from the GPU global memory to the host system RAM. The

CPU then performs multiple post-processing stages, which lead to finished grid line

intersection estimates.

The first post-processing stage is formation of complete ridges in memory. The

ridges are of variable length, and consist of sequences of three-dimensional points

through the scale-space, defined by interpolated intersections with the faces of the

interpolation cubes (ridge intersection kernel). Extraction of the variable length ridges

starts with traversal of the border summary data. From the border data content and

the conventions of Table 4.4, the CPU can rapidly identify the global interpolating

cube address of a ridge endpoint.

From an endpoint, a tracing process begins to produce the full ridge in memory.

The algorithm iteratively follows the segments through the interpolating cube space,

storing new points as they are encountered to a list. As the follower process passes

through borders that defined the linking process on the GPU, the algorithm locates

the corresponding summary data element, and clears it to avoid later instantiation

of the tracer algorithm on the already traversed data. Ridge tracing continues until

an invalid or ambiguous ridge segment is encountered, or until the global scale-space

boundary is reached.

Storage of the variable length ridges is through a global point list in memory. An

associated array of structures records the bounding addresses of the ridge in the point

list, as well as statistical data such as length an approximated slope.

Ridge Filtering

Only a small number of ridges extracted from the scale-space correspond to true grid

lines in the image. Most ridges are caused by imperfections in the imaged metal

surface, or simply noise where no valid ridge exists. Figure 4.22 shows the collection

of ridge segments from a portion of a typical grid image. The grid lines as well as

extracted noise between them (where there is no valid ridge signal) are visible. Many

94

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 4.22: Raw ridges extracted from a portion of an image.

of the noise ridges are suppressed by the ridge linker kernel which requires crossing

of a block border, but some remain. True grid lines are relatively straight in the

image, and because the scale-space is a three-dimensional representation, consistency

of detection scale can be be used for filtering. Sharp changes in either direction of a

ridge, or in the detected scale indicate that a ridge is not a grid line, so spatial filtering

removes most noise data. A final filtering stage, based on ridge length, rejects short

segments.

A key consideration in grid line extraction is that where perpendicular lines in-

tersect, a valid intensity ridge does not exist (trifurcation occurs). At these points, a

ridge in the scale-space either terminates, or continues through the intersection but

at a much larger detection scale. Filtering using detection-scale gradient naturally

breaks the grid lines at these sharp changes of scale, providing segments that can be

used for intersection estimation.

4.3 Parabola Fitting and Intersection Estimation

From ridges detected around a grid line intersection, polynomials are fit to the pairs of

ridges belonging to the same grid line, but on opposite sides of an intersection. The

polynomials may then be intersected to interpolate a subpixel location of the true

intersection point. The ridge data that is used to define the polynomial is dense, with

approximately 50-100 data points on each side of the intersection (one point from

95

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

each interpolating cube face intersection). This parameterized approach reduces the

effect of small errors in the ridge points, which are introduced by linear interpolation

on the faces of the interpolating cubes, and also by floating point errors in the metric

computations.

Before a parabola can be fit to pairs of ridges surrounding an intersection, the

correspondence between ridges must be determined. To accomplish this, a list of all

filtered endpoints is formed, and candidate ridge groupings are created based upon

spatial endpoint proximity. The approximated slopes of the ridges are then used to

pair corresponding segments for parabola fitting.

There is flexibility in the choice of grid line parameterization order and fitting

technique. Second-order parameterization was used because the grid spacing is small

relative to the smooth curvatures on the part surfaces being measured. In the sheet

metal forming application, the original grid dimensions are chosen based on maximum

part curvatures that are known in advance. Surface curvatures higher than second

order between grid lines are not physically plausible with correct choice of grid scaling,

and if they occur, do not meet the homogeneous deformation requirement of the

surface strain calculation technique.

A variety of techniques can be used to fit and intersect parabolas. Mitchell [106]

considers some methods, including the iterative fitting process described by Ahn et al.

[3]. A least squares fitting and conic section-based intersection approach is described

in this section.

Least squares fitting based on singular value decomposition (SVD) can be used

to minimize the error energy between a function and data. To simplify subsequent

parabola intersection, the least squares fit can be performed in the image coordinate

system. A parabola, defined as P (x) = c2x
2+ c1x+ c0, is fit to the data to determine

the coefficients ci. The parabolas P1(x) and P2(x) can then be equated as P1(x) =

P2(x). Solving for the x coordinate, the coefficients are simply subtracted to form

a new quadratic equation, and the roots found. The C-based GNU Science Library

[50] can be used to perform least squares fitting and root finding. The solution in a

region bounded by the original data points is taken as the estimated intersection.

The disadvantage of fitting parabolas in the image coordinate system is that the

least square errors may be non-orthogonal to the function. To solve this problem,

96

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

the parabola can be fit to the data in a local coordinate system. Practical grid line

curvatures are small across a single intersection distance, so by fitting the parabola

to the data in a rotated coordinate system, least squares approaches approximate

orthogonal error terms. Intersecting parabolas defined in different coordinate systems,

however, is more complex.

A local coordinate system (xp, yp) can be defined, with the xp axis aligned in the

principal direction of the data to be fit. Within this system, a parabola is expressed

as:

(x− xc)
2 = p(y − yc) (4.11)

where (xc, yc) define the location of the parabola vertex, and p the focus distance.

An angle θ determines the rotation between the image and local parabola coordinate

systems. Using θ, the image-based coordinates of the parabola vertex (Xc, Yc) can

be determined. The four parameters p, (Xc, Yc), and θ completely define a general

parabola in the image coordinate system [3].

The parabola parameters may be determined from the ridge data through least

squares fitting. The angle θ is estimated from a linear fit of the data, and the points

then rotated into the local coordinate system (xp, yp). A parabola P (x) = c2x
2 +

c1x + c0 is then least squares fit to the data. From expansion of Equation 4.11 into

the form of P (x), the parabola parameters can be recovered as:

p =
1

c2
(4.12)

xc =
−pc1
2

(4.13)

yc =c0 −
x2
c

p
(4.14)

A normalized error bound is used to reject mismatched or malformed grid lines,

calculated as the sum of squares of the residuals normalized to the number of data

points used in the fit.

To express two parabolas in a common coordinate system (in preparation for

intersection), the transform between the parabola coordinate system and the image

system is incorporated into Equation 4.11. This expression can then be rearranged

97

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

into the form of a conic section:

[

x y
]

[

a00 a01

a10 a11

][

x

y

]

+
[

b0 b1

]

[

x

y

]

+ c = 0 (4.15)

Using the notation Cθ and Sθ to represent cos(θ) and sin(θ), respectively, the

conic section parameters are simplified as:

a00 =C2
θ (4.16)

a11 =S2
θ (4.17)

a01 =a01 = CθSθ (4.18)

b0 =pSθ − 2C2
θXc − 2CθSθYc (4.19)

b1 =− 2CθSθXc − 2S2
θYc − pCθ (4.20)

c =C2
θX

2
c + S2

θY
2
c + 2CθSθXcYc − pSθXc + pCθYc (4.21)

These parameters are calculated for both parabolas to be intersected, and a non-

linear search is then performed to find the image coordinate point that satisfies both

conic sections. The search is initialized at the mean image coordinate of the relevant

ridge data. The solution point is taken as the sub-pixel grid line intersection location.

4.4 Results

Results from a full implementation of the GPGPU-accelerated grid line intersection

measurement process are presented. Three classes of results are described: (1) Timing

and GPGPU resource utilization results, (2) intersection measurement accuracy from

synthetic data sequences, and (3) results from real-world video of gridded sheet metal

targets.

98

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 4.5: NVIDIA GTX480 Details
Model NVIDIA GTX480
Architecture GF100
Processor cores 480
Transistors 3.0 billion
Process technology 40 nm
Memory 1.5 GB GDDR5
Memory clock 1848 MHz
Processor clock 1401 MHz
Memory interface width 384 bit

Table 4.6: Kernel Execution Time (single frame)

Kernel Name GPU Time [ms]

Horizontal Convolution 2.28
Vertical Convolution 3.97
Metric Computation 15.55
Metric Intersection 21.71
Ridge Linker 2.32

Total 45.83

4.4.1 Test Platform

The experiments were performed with an NVIDIA GeForce GTX 480 graphics card

in a host system containing two Intel Core2 Duo (E8400) processors at 3GHz, 4GB of

RAM, and running CUDA version 3.0 under Ubuntu Linux 9.04. The test sequences

were 8-bit grayscale video data from a Point Grey Research Dragonfly camera, 1024×

768 pixels in size at 15 fps. Details of the camera were provided in Section 2.3.2.

Table 4.5 contains information about the NVIDIA GTX 480 GPU.

4.4.2 Timing and Resource Utilization Results

Timing Results

The execution times of each kernel, as measured by the GPU performance counters

for a typical image, are presented in Table 4.6. The memory transfer time may be

99

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 4.7: Kernel Block Efficiency

Kernel Name Occupancy Divergent Branches Instructions Executed

Horizontal Convolution 100% 51 1375816
Vertical Convolution 100% 1038 1538496
Metric Computation 33% 208 15091030
Metric Intersection 58% 169894 20333403
Ridge Linker 88% 28020 1962479

hidden by asynchronously streaming data to and from the graphics device in parallel

with execution, so is not included. Data transfer volumes are small compared with

the PCI Express bus bandwidth. Across 50 image frames in a typical video sequence,

the average frame processing time was 47.39 mS (21.1 fps) with a standard deviation

of 2.05 ms. This timing is consistent across thousands of video frames processed. The

small increase over the total in Table 4.6 is from overhead between kernel calls.

GPU Code Performance

Table 4.7 presents the CUDA profiler output with respect to occupancy, divergent

branch performance, and instructions executed. All of the kernels exhibit some diver-

gent branching because the task could not be formulated for fully coherent memory

accesses (primarily while handling border apron data). Refinement of the kernels was

used to reduce incoherent memory access patterns, while at the same time maintaining

overall efficiency by reducing complex memory arithmetic and divergent conditions.

Some techniques used during kernel refinement included: (1) constant memory lookup

tables (cached) to reduce the number of repetitive online computation totals when pre-

computation was feasible; (2) processing of multiple pixels per computational thread

to amortize data load overhead; (3) block grid and thread block size optimization to

improve the utilization and hide memory latencies within each multiprocessor.

Resource utilization within the GPU is summarized in Table 4.8. Note that the

local memory requirement of zero has been met for all kernels, indicating that multi-

processor memory is sufficient for the kernels as designed, thereby avoiding accesses

to higher latency “local” overflow memory.

100

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 4.8: Total Resource Utilization
Method Registers Shared Mem. Local Mem.

Horizontal Conv. 7 4224 bytes 0
Vertical Conv. 17 3208 bytes 0
Metric Computation 54 4928 bytes 0
Metric Intersection 26 8128 bytes 0
Metric Linking 15 2240 bytes 0

CPU Post-processing

The post-processing stages involve extraction of the GPU-generated ridge data and

formation of final ridges in host system RAM. The overall time required for creation

of the variable length output ridges in system RAM is dependent upon the number

of ridges that must be formed, and for images in this application is faster than the

15 frames per second camera frame rate. The level of filtering performed on the ridge

data also affects the CPU-side execution time, as does the search for spatially close

ridge endpoints to use in least squares parabola fitting. In the current implementation

CPU processing executes faster than the GPU side, so little optimization effort was

spent on the CPU code. Current generation processors are much more capable than

the Core2 Duo (E8400) used in this work, so CPU processing is not a bottleneck in

the system.

4.4.3 Accuracy Results

To validate the accuracy of the proposed (and implemented) approach to grid line

intersection measurement, ground truth data is required for comparison with the

extracted coordinates. A synthetic sequence simulating 15 successive camera frames

was generated using the Persistence of Vision Raytracer (POV-Ray) [129]. The model,

scene description, and camera trajectory were designed to simulate the appearance

of real data sequences. Using projective geometry, the model points were projected

onto the synthetic camera image planes, and compared with the detected grid line

intersections. The scripts written to generate the POV-Ray output are included in

Appendix A, and two sample output images are shown in Figure 4.23.

A sequence of 15 synthetic (raytraced) frames are shown in Figure 4.26, with the

101

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a)

(b)

Figure 4.23: Sample synthetic images.

102

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 4.9: Synthetic image grid measurement errors.
Frame Mean error [pixels] Standard deviation [pixels2]
Number Horizontal Vertical Horizontal Vertical

1 -0.0010 -0.0053 0.0354 0.0292
2 0.0019 -0.0068 0.0279 0.0252
3 -0.0057 -0.0128 0.0318 0.0255
4 -0.0010 -0.0100 0.0334 0.0284
5 0.0032 -0.0080 0.0320 0.0246
6 -0.0062 -0.0082 0.0684 0.0424
7 0.0009 -0.0042 0.0357 0.0258
8 0.0067 -0.0000 0.0393 0.0248
9 -0.0007 0.0056 0.0488 0.0311
10 -0.0058 0.0062 0.0510 0.0347
11 0.0043 0.0214 0.0620 0.0347
12 -0.0100 0.0246 0.0559 0.0340
13 -0.0005 0.0300 0.0801 0.0474
14 -0.0052 0.0377 0.0952 0.0547
15 0.0066 0.0313 0.1210 0.0785

GPU-accelerated grid intersection locations overlaid. Due to ambiguous scale-space

interpolation cube instances, not all grid intersections are detected. To simplify the

display, and to demonstrate that missed detections are not persistent, the grid inter-

sections are colour coded. Red markers indicate a newly detected grid intersection

point, not seen previously in the sequence. Green markers indicate an intersection

detected in the current frame, and also detected previously. Yellow markers indicate

the estimated location of a previously seen intersection, which for reasons of noise

or estimation uncertainty was not reliably detected in the current frame. To assist

reader interpretation of the interframe motion, two coloured tracking circles have

been overlaid on the frames. The number n associated with each frame indicates the

number of intersections detected in that frame.

Based on analytic intersection locations in each frame, accuracy of the detected

intersections was tested. The means and standard deviations of the errors for the 15

frame sequence are listed in Table 4.9, and Figure 4.24 depicts the horizontal and

vertical error mean and standard deviations for each frame. Figure 4.25 shows the

error distribution from two typical frames, with the position of each point indicating

103

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 4.24: Synthetic video sequence - mean intersection detection errors with single
standard deviation error bars

the horizontal and vertical error between the analytic and detected intersection points.

As seen in Figure 4.24, the error standard deviation increases with the frame count,

which corresponds to the increasing depth-of-field blur in the images (as is visible in

Figure 4.26). The raytraced sequence intentionally increases camera incidence angle

(and thus DOF blur) with increasing frame number to test the measurement accuracy

in varying focus conditions.

The worst case error standard deviation was for the most blurred frame (frame 15),

as expected, with a horizontal standard deviation of 0.121 pixels2 and a vertical value

of 0.079 pixels2. Most frames obtained standard deviations below 0.05 pixels2, with

the well focussed frames receiving the least error. Increased DOF blur is expected to

increase detection error, primarily because spatial localization information is lost.

Compared with feature detection results in the literature, the scale-space ridge

detection approach performs well. For a checkerboard calibration pattern, Douskos

104

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(a)

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(b)

Figure 4.25: Error distribution, in pixels, of detected grid intersections relative to
ground truth values (frames 3 and 5, synthetic sequence)

et al. [33] report corner extraction to ≈ 0.1 pixel accuracy. These results are from well

focussed images, so the comparable scale-space results in the presence of DOF blur

implies improved detection accuracy. Steger et al. [148] reported edge detection error

with maximum standard deviation of ≈ 1
30

pixels, and Devernay et al. [30] measured

edge position error with standard deviation < 1
10

pixels. Considering the blurred

imaging conditions and interpolated intersection location, the proposed algorithms

perform well.

4.4.4 Experimental Video Sequence Results

Experiments using actual video sequences were used to test the robustness of the

grid line intersection detection process. Figure 4.27 shows the output from one such

experiment, with 15 successive frames shown and with detected grid intersections

overlaid (using the same color coding as shown in Figure 4.26).

Noise, surface imperfections, scale-space ambiguities, and parabola fitting errors

lead to some intersections being rejected in certain frames. No attempt is made to

bridge broken line segments, or to iteratively reduce parabola fitting error through

additional filtering or extrapolation. The grid images are inherently part of a video

sequence, so as long as temporally neighbouring frames detect an intersection missed

in a specific frame, no significant information is lost. Testing has shown that most

105

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) n = 99 (b) n = 94 (c) n = 109 (d) n = 93

(e) n = 88 (f) n = 86 (g) n = 88 (h) n = 70

(i) n = 71 (j) n = 76 (k) n = 65 (l) n = 53

(m) n = 66 (n) n = 75 (o) n = 71

Figure 4.26: Synthetic video sequence frames with detected intersections overlaid.
Red markers indicate intersections newly detected in the current frame, green markers
indicate an intersection detected in the current frame and also in previous frames.
Yellow markers provide the estimated locations of intersections detected in a previous
frame, but not detected in the current frame. Colored circles have been logically fixed
to two grid intersections, to provide a visual means to track the camera motion. The
number n associated with each frame indicates the number of intersections detected.

106

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

missed intersections are not persistent, as can be seen for example in Figure 4.27.

Where a missed intersection is in fact persistent across frames, it is because of physical

damage to a grid such as a scratch or reflection from dirt that obscures a portion of

the line.

4.4.5 Discussion

Fidelity of poorly focussed intersections

Given the presence of depth-of-field blur around grid intersections, the exact response

of the grid intersection locations is perturbed by the effect of lens distortions and other

non-linear effects. At larger scale-levels, the increased filter variance reduces trust in

the spatial location of the feature of interest. For these reasons, and without extensive

calibration and modelling of a specific vision system in the presence of significant blur,

grid intersections that are detected at large scale levels are taken to be untrusted.

These intersections are used to track the motion of the grid between frames of a

video sequence, but are not considered to be accurate data points as input to a

three-dimensional reconstruction problem. When all intersections are simultaneously

blurred, motion blur caused by an operator sharply jerking the camera cannot be

ruled out. The intersections in these occasional highly blurred images should be used

for tracking only, and can be identified by large detection scale, and also through

increased error in the parabola fitting process. Some analysis of scale-space response

in the presence of blur is provided by [179].

Extension to non-separable kernels

The GPU algorithm, as implemented for this work, requires a separable scale-space

generating kernel. Extension to non-separable generating kernels would require a

new convolution engine, replacing the GPU horizontal and vertical convolution ker-

nels with a single convolution stage. It is expected that some decrease in perfor-

mance would result, primarily related to memory access complications across two-

dimensional regions of global memory. Given the relatively small size of multiproces-

sor shared memory, multiple convolution passes across a single portion of raw data

(including sharing of partial results between thread blocks) would likely be required

107

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) n = 104 (b) n = 95 (c) n = 103 (d) n = 103

(e) n = 100 (f) n = 97 (g) n = 106 (h) n = 95

(i) n = 98 (j) n = 101 (k) n = 95 (l) n = 89

(m) n = 88 (n) n = 92 (o) n = 96

Figure 4.27: Actual test video sequence. Red markers indicate intersections newly
detected in the current frame, green markers indicate an intersection detected in
the current frame and also in previous frames. Yellow markers provide the estimated
locations of intersections detected in a previous frame, but not detected in the current
frame. Colored circles have been logically fixed to two grid intersections, to provide a
visual means to track the camera motion. The number n associated with each frame
indicates the number of intersections detected.

108

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

for practical filter kernel sizes.

4.5 Summary of this Chapter

This chapter has provided a review of GPUs in the context of general purpose com-

putational acceleration, and has described parallel design of the scale-space ridge

extraction algorithm for GPGPU implementation. The algorithm has been demon-

strated at faster than 15 frames per second, which is the associated camera frame rate.

The system is capable of processing volumes of data in sustained video sequences, typ-

ically extracting more than 1500 sub-pixel grid intersections per second. Synthetic

experiments have been performed to validate the sub-pixel detection accuracy of the

system, and real video sequences have been used to verify system performance in the

presence of noise and other real world conditions.

109

Chapter 5

Topological Interframe Grid Track-

ing

Multiple view triangulation using a single (monocular) camera requires movement of

either the camera or target to obtain views from varied poses. Correlation of features

between images is also required, so that rays corresponding to the same feature can

be intersected. Correlating grid line features across a video sequence can be solved

through interframe motion tracking, allowing a single grid intersection to be identified

in all frames for which it is visible. Even when outside of the camera field of view for

many frames, the regular grid structure allows intersections to be reacquired as they

enter back into view. Tracking must be error free across an entire video sequence

to enable calibration and robust triangulation, even when some frames are strongly

blurred. Failure to extract the correct interframe transform splits a video sequence,

preventing feature correlation across the failed frame (temporally), and therefore

preventing triangulation using viewpoints both before and after the failure.

Sample interframe motion vectors from video sequences of a flat calibration plane

and deformed metal dome are shown in Figure 5.1. The regular pattern and well

defined grid line intersections provide a robust feature set, avoiding the more general

problem of locating and correlating natural features, such as interest points, between

images. Interframe motion tracking has been extensively studied in the literature,

in some cases for motion compensation in video compression algorithms. GPGPU

applied to interframe motion tracking is described by Park et al. [121].

110

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 5.1: Sample interframe motion vectors from (a) planar calibration target, (b)
deformed metal dome.

Although grid tracking and point correlation are required by many camera cali-

bration algorithms, they are not addressed in the literature. Most camera calibration

targets are chosen to be smaller than the camera field of view, allowing boundaries to

be detected and used for absolute grid positioning. Tracking of the close-range grid

images poses three challenges not typically encountered by motion tracking applica-

tions.

1. Grid encompasses entire field of view: The camera field of view is filled

by the surface grid, so no external marks or shape information about the grid

outline can be discerned. A large grid (relative to camera field of view) is chosen

to better pose the hand-eye calibration problem, as described in Chapter 6.

2. Grid pattern is regular, with multiple shifts appearing similar: The

grid pattern is repeating, so aside from occasional surface defects such as scratches

or dirt, units of the grid are indistinguishable from one another. Coupled with

the occasionally erratic motion generated by human manipulation of the camera,

different shifts of the grid pattern can produce the same apparent result. Region

matching approaches such as Sum of Absolute/Squared Differences (SAD/SSD)

therefore do not provide unique solutions.

3. DOF blur changes appearance of intersections between frames: With

111

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

changing DOF blur, correlating intersections and therefore interframe motion

using scale or width of the intersections fails. In frames where the entire field is

blurred, interframe tracking must still be obtained to avoid splitting the video

sequence.

Given occasional dirt or scratches on the sheet metal surface, an obvious approach

is to track these surface imperfections. With realistic (non-diffuse) lighting, however,

the apparent size, shape, and existence of these types of features are transient and

unstable. Even with diffuse lighting, DOF blur can quickly obscure such surface

features.

To generate irregularity in the grid pattern, fiducials are occasionally placed within

grid squares. For this work, the fiducials are single spots from a fine tipped felt marker,

but dots or other shapes can be included in the grid production process for larger

scale implementation. Simplification of interframe tracking could be achieved through

addition of uniquely coded information to the fiducials, such as a unique identification

number or graphic code. [40] considers this approach for checkerboard grid patterns.

Uniquely coded fiducial markers are not used in this work, however, because they

significantly complicate the grid production process and may be unreliable in the

presence of blur.

Irregularity could alternatively be added to the grid pattern through irregular line

spacing or line width, simplifying the correlation of intersections between frames, and

providing a unique interframe registration solution. To maintain simplicity of grid

printing and to provide a more robust solution, this work restricts itself to the more

difficult problem of regular (uniform) grids.

The remainder of this chapter describes a novel interframe tracking process that

exploits topology of the grid structure. Dimensionality of the projective tracking

problem is reduced, leading to a parameter space that can be searched exhaustively.

Grid asymmetry such as fiducial markers are not explicitly extracted or measured,

but are used passively by the algorithm, greatly relaxing requirements on fiducial

production method and characteristics.

112

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

5.1 Interframe Tracking Using Fiducials

Fiducials introduce non-uniformity into the grid pattern. To maintain this function,

the fiducial pattern should be asymmetric within the image field of view, and should

produce a unique registration solution for practical grid motions. Fiducials can enable

tracking in two ways, either explicit or implicit.

5.1.1 Explicit Fiducial Tracking

Explicit tracking involves fiducial feature extraction such as blob measurement, fol-

lowed by motion estimation from the feature points across frames. Scale-space blob

detection [94] has been demonstrated to extract the blob fiducials in the presence

of DOF blur (Kinsner et al. [74]). An initial estimate of the interframe motion

and therefore correlation between fiducial points can be produced, and then refined

through an approach such as Random Sample Concensus (RANSAC) [60]. Initial (pu-

tative) matching can be performed using historical motion vectors, region correlation

techniques such as SAD/SSD, properties of the fiducial mark, and other approaches.

In practice, motion vectors from previous frames have been found in test sequences to

be unreliable as predictors of current frame motion. This is primarily because human

manipulation of the camera routinely reverses the direction of motion between con-

secutive video frames, and the projective nature of the camera causes small angular

accelerations to produce large changes in apparent interframe trajectory.

Solution to the general tracking problem between images of a target involves

computation of the projective transform between the two images. The resultant

2-D projective transform (homography) has eight degrees of freedom, and can be

computed from a minimum of four point correspondences [60]. The challenge in this

application is initial matching of the fiducial features, especially in the presence of

varying DOF blur. Even with RANSAC approaches, the degrees of freedom in the

transform coupled with changing image conditions impede robust tracking.

113

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

5.1.2 Implicit Fiducial Tracking

A second approach to interframe tracking assisted by fiducials is an intrinsic approach,

where the marks are not explicitly extracted, but the properties of which are included

in some higher level description of the image. This approach carries the advantage

that a feature detector need not be selected to robustly locate fiducials in the presence

of varying depth of field blur, and there is much more flexibility in fiducial appearance

and production method.

The algorithm proposed here combines grid topology with fiducial structure. Fidu-

cials are defined only approximately in terms of shape, size, and placement, and can

even be hand drawn marks placed randomly within the grid. Existing work to auto-

mate detection of checkerboard calibration patterns is available from [143] and [144],

but they consider pose estimation from single checkerboard frames, and do not facil-

itate interframe motion tracking. Checkerboard patters differ in structure compared

with a line-based grid, and thus require a different topology construction approach.

5.2 Proposed New Interframe Tracking Method

By building a topological representation of the grid structure, the dimensionality of

the projective tracking problem is reduced from a general homography (eight continu-

ous degrees of freedom (d.o.f.)) to discrete shifts in the directions of the grid axes (two

discrete d.o.f.). Tracking fiducials are intrinsically measured during the topology con-

struction process, obtained through active pixel ratios within thresholded connected

components. The processing steps are shown in Figure 5.2.

5.2.1 Thresholding

To avoid the need for explicit fiducial and line detection, an image is thresholded

(binarized) to isolate the image regions between grid lines. The goal of thresholding

in this context is to separate grid lines and fiducials from the remainder of the image.

The following algorithm stages are resilient to noise and artifacts, and because grid

line intersection measurement (which must be accurate) does not utilize the binary

output, the process does not have to be precise. In many images, varying illumination

114

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.2: Topological tracking - algorithm flow. Pre-processing steps are coloured
red (first set of boxes), structure extraction and filtering are in black, and interframe
transform calculation in blue.

and low contrast preclude the use of a global thresholding algorithms such as the Otsu

method [117]. Instead, local adaptive thresholding is required to compensate for

spatially changing illumination and reflections. The thresholding algorithm should

notably reduce or remove the effect of specular reflections from the part surface,

decoupling the grid registration problem from the changing position of reflections on

curved surfaces.

For images of both planar calibration grids and deformed metal surfaces, the

Shafait et al. thresholding method is chosen [141]. This method is based upon the

115

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Sauvola et al. [136] technique, but is accelerated using integral images [169] to enable

rapid computation of local image statistics. Surveys and analyses of binary thresh-

olding techniques in the context of document binarization are considered in [6] and

[140], both of which select the Sauvola appoach as producing the best results. Figure

5.3 shows sample thresholded image output from the Shafait method. For the grids

tested, a Shafait radius parameter fixed at 30 produced good results.

An alternative thresholding method that has been found to be effective on de-

formed sheet metal surfaces is the optimization approach of Ray et al. [130]. The

technique has no parameters to adjust, but requires at least hundreds of iterations to

converge (for the images tested). This algorithm is useful for severely distorted and

deformed sheet metal images, in which the stamping process has damaged portions of

the grid. For practical calibration and deformed part surfaces, the Sauvola algorithm

performs well and is significantly faster than the iterative optimization approach.

5.2.2 Morphological Cleanup

Image thresholding often produces speckle noise and other small scale erroneous fea-

tures. To remove these features, a morphological close operator [25] is applied. The

result from a sample image region is shown in the left column of Figure 5.4, with

some speckle noise removed from the grid unit interior.

In a later processing step, the tracking algorithm uses connected component la-

belling to identify the interiors of grid units, which are separated by the thresholded

grid lines. Any small gaps in the lines cause grid elements to be erroneously joined

together. A simple morphological erosion [25] phase is used to close any small gaps in

the thresholded grid lines, isolating grid unit interiors that were weakly connected be-

fore erosion. The right column of Figure 5.4 shows the effect of the erosion operation

on a motion blurred image region.

The structuring element used for morphological closing and erosion is a cross

operator of radius 1 pixel, as shown in Equation 5.1.

se =

0 1 0

1 1 1

0 1 0

(5.1)

116

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.3: Two sample images using the Shafait thresholding algorithm. The orig-
inal image is shown in (a),(d), followed by the thresholded image in (b),(e), and a
connected component colouring of the thresholded data in (c),(f).

117

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

5.2.3 Connected Component Labelling

Connected component labelling is used to uniquely identify the isolated image regions

between grid lines. The topological relation between these regions will form the basis

of the tracking approach. Thresholded grid lines separate the interior grid regions

from one another, so connected component identification associates pixels with the

unique grid interior region that they belong to. Four-connected component labelling

is used because regions are well defined, and high frequency noise has been suppressed

through morphological processing. Output from the connected component labelling

process is shown in Figures 5.3(c) and 5.3(f).

Connected component analysis can be performed with linear complexity in the

number of pixels [157].

5.2.4 Metric Computation

Interframe tracking estimates motion by comparing the similarity of grid elements

across various possible shifts of the grid. To compare the grid elements, a metric

value is computed at each connected component region, and this number is used by

the optimization objective function in a later step. Key requirements of the metric are

that fiducial information must be incorporated, and that the value should be relatively

invariant to changes of the connected component size as camera range changes.

After thresholding, both grid lines and fiducials have a common binary value,

while the remaining pixels which form the connected components should have the

complimentary value. When fiducials occur within a grid unit, they appear as a hole

or protrusion into the connected component region. The number of pixels that are

active in a connected component (nthresh) can be compared with the number of pixels

in a filled version (ntotal) of the component. For grid elements with no fiducial, there

should be no (or few) pixels on the interior of the region that are not set. When

a fiducial if present, however, its area is effectively subtracted from the connected

component, reducing the pixel count compared with a filled version of the same

component. The metric value defined for the i-th connected component in frame k is

therefore:

σk
i =

ni
thresh

ni
total

(5.2)

118

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4: Sample results from morphological processing. Two images regions are
shown, the first with some thresholded noise, and the second with a broken grid
line caused by motion blur. For both images the original is shown first ((a),(d)),
followed by the raw thresholded version ((b),(e)) and the morphologically processed
data ((c),(f)).

119

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Original, n=2572 (b) Filled, n=2922 (c) Convex hull, n=3031

Figure 5.5: Sample connected component with fiducial. (a) Thresholded region, (b)
region after filling internal holes, (c) convex hull of (a). n indicates number of active
pixels in the region.

Counting of the active pixels nthresh in a region can be incorporated into the

connected component labelling process. Region filling (to compute nfilled) can be

accomplished through a number of algorithms. The first approach of simply filling

interior holes in the connected component can be achieved through morphological op-

erators, inverse pixel connected component labelling, or a variety of other techniques.

An alternative approach is to compute the convex hull of the connected component,

algorithms for which are well studied and available in textbooks such as [116]. Fig-

ure 5.5 shows a typical connected component with an internal fiducial, with nearly

identical results from filling and convex hull construction. Convex hull analysis pro-

vides an advantage in situations where a fiducial or surface mark is not completely

enclosed by the connected component (e.g. touching the grid line), an example of

which is shown in Figure 5.6. Internal hole filling does not detect the fiducial, while

convex hull analysis fills the protrusion into the component, thereby reflecting the

feature in the metric value. The disadvantage of convex hull analysis is that few con-

nected components have fiducials that are not completely enclosed, but many regions

have slightly concave boundaries. Convex hull analysis increases the nfilled value for

most components, thereby reducing the mean metric value.

The relatively small number of connected components that must be visited, typi-

cally on the order of 100-200 per image, leads to acceptable CPU computational load.

Numerous convex hull algorithms are available, many with computational complexi-

ties of O(n log n) for n input points [116].

120

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Original, n=1504 (b) Filled, n=1504 (c) Convex hull, n=1730

Figure 5.6: Sample connected component with defect from manufacturing press. (a)
Thresholded region, (b) region after filling internal holes, (c) convex hull of (a). n in-
dicates number of active pixels in the region

For grid units with no fiducial, the ratio defined in Equation 5.2 is near unity.

When a fiducial or other distinguishing mark exists within the interior of a connected

component, the ratio is less than one. A histogram of the metric values for 14568

connected components, across 100 frames of a deformed metal dome video sequence,

is shown in Figure 5.7. Filled components (as opposed to convex hulls) are used in

the test. The vertical axis is shown with a log-scale because the histogram bin near

unity holds the majority of values (93.44% of the metric values are larger than 0.98).

At this stage of processing, simple filtering is performed. Any connected compo-

nents with less than a threshold number of pixels are rejected to avoid considering

small noise regions in the grid topology. The centroids of all remaining connected

component regions are then calculated, as shown in Figure 5.8, forming the vertices

for subsequent triangulation.

5.2.5 Delaunay Triangulation

The topology of the connected component regions must be extracted and recorded.

To accomplish this, Delaunay triangulation is applied [26] to centroids of the regions.

Delaunay triangulation is a well known and studied algorithm, and provides a well

balanced triangulation by maximizing the minimum angle in a triangle (avoiding

“skinny” triangles). Specifically, the triangulation is formed from a set of vertices

121

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

0

10
1

10
2

10
3

10
4

10
5

Metric value

F
re

q
u

e
n

c
y

Figure 5.7: Histogram of metric values from 100 image frames of a deformed metal
dome, including 14568 connected component regions. The vertical axis is log-scale
because the histogram bin near unity holds the majority of values.

such that no fourth point is inside the circumcircle of the three points joined in a

triangle. Example output is shown in Figure 5.9(a).

An advantage of this approach is that the nearest neighbour graph is a subgraph of

the Delaunay triangulation, allowing neighbouring regions in the regular grid topology

to be rapidly located. For camera imaging angles close to the deformed surface normal

(camera plane parallel to part surface), this neighbour search method is effective. The

use of Delaunay triangulation in the presence of projective distortion, as caused by

shallow camera view angles, is considered at the end of Section 5.2.6.

Delaunay triangulations can be performed in O(n log n) time for n input points

[26].

5.2.6 Quadrilateral Formation

Delaunay triangulation of the connected components produces, on average, six edges

connected to each vertex. Only four of the edges correspond to principal grid di-

rections, so the remaining edges must be pruned. There are multiple methods to

122

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.8: Thresholded grid image frame with fiducials visible. Centroids of con-
nected components are denoted by ‘x’ marks.

accomplish this, with the simplest using the relative length of edges connecting a

group of local vertices. The grid pattern printed on the metal surface is rectilinear,

so in orthogonal views of each triangle the hypotenuse corresponds to the edge that

should be trimmed. From this observation, complementary triangles that share a

common “long edge” can be paired to form a quadrilateral. The common long edge

is removed from the representation, leaving edges that link connected components in

the principal grid directions. Figure 5.9(b) shows an example of this pruning process.

The result of pruning leaves a collection of quadrilateral structures in memory, with

each entry including the point indices of the four associated vertices.

To simplify the matching of long edges, the vertices of each triangle are permuted

such that indices of the longest edge are in a common position in the triangle record.

Long Edge Analysis

The approach of pruning the long edge of each triangle assumes that the grid pattern is

rectilinear (orthogonal grid lines), and also that there is little distortion in the image.

The camera forms projective images of the target, so an analysis of the “long edge”

approach to pruning is required. A simulation is set up as shown in Figure 5.10, in

which a square is imaged using projective geometry and a simulated pinhole camera.

123

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Delaunay triangulation.

(b) Pruned quadrilaterals.

Figure 5.9: Sample of long edge pruning from the Delaunay triangulation. The results
is the set of quadrilaterals connecting grid units in the principal grid directions.

124

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.10: Simulation parameters for long edge assumption in grid unit matching.

Figure 5.11: Critical camera viewing angle beyond which grid unit Delaunay diagonal
is shorter than another edge.

125

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Long edge test passed (αn = 10◦, βn = 1◦). (b) Long edge test failed (αn = 72◦, βn = 1◦).

Figure 5.12: Sample triangulations from the long edge view angle simulation. The
light (red) line is the longest edge, and is ideally the hypotenuse of the triangulation.
When view angle causes a non-hypotenuse edge to become the longest, edge length
can no longer be used to locate the common triangle edge forming a quadrilateral.
Perspective distortion is visible in the second image.

Delaunay triangulation is performed on the imaged vertices, and the diagonal edge

length compared to the square boundary edges. When the diagonal edge (common

between two triangles) appears shorter than another edge, the long edge approach to

diagonal identification has failed. Rotation and camera angle parameters are defined

as shown in Figure 5.10, and for a set of rotation angles βn, the camera angle αn that

causes failure is recorded. The camera distance d is held constant, and the results for

90◦ of αn rotation are shown in Figure 5.11. An example of a projection that passes

the long edge test is shown in Figure 5.12(a), with the long edge coloured in red. A

corresponding failure is shown in Figure 5.12(b).

The analysis shows that the long edge approach to triangle pruning is appropri-

ate for the close-range imaging application. The worst case failure angle occurs at

approximately 49◦ from the surface normal, which is beyond practical view angles in

the presence of DOF blur.

126

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Delaunay test passed (αn = 50◦, βn = 1◦). (b) Delaunuay test failed (αn = 66◦, βn =
15◦).

Figure 5.13: Sample triangulations from the Delaunay angle simulation. The blue
lines indicate valid Delaunay edges, as defined by the true geometry of the grid points
before imaging. In (b), the red lines indicate failure edges which do not conform to
the correct geometry. The failures occur because projective imaging causes points to
appear near each other in the image plane.

Delaunay Triangulation Under Perspective Imaging

Delaunay triangulation is used to join neighbouring grid units in the topology, pro-

ducing a nearest neighbour graph with some additional diagonal edges. The camera

forms projective images of the gridded target, so analysis of the Delaunay triangu-

lation in the presence of projective imaging is required. A simulation is set up in

a similar manner to the “long edge analysis”, with the same parameters as shown

in Figure 5.10. A small grid structure with 25 vertices is imaged using projective

geometry and a simulated pinhole camera. Delaunay triangulation is then performed

on the imaged vertices, and the resultant graph edges compared with legal edges in

the grid structure. As the camera viewing angle from the surface normal increases,

127

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.14: Critical camera viewing angle beyond which Delaunay edges cease to
conform to the true grid geometry.

128

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

perspective distortion eventually causes the triangulation to connect vertices that ap-

pear as nearest neighbours in the image, but that are in fact not neighbours in the

true grid geometry. The viewing angle (αn) and grid rotation angle (βn) at which the

Delaunay triangulation generates an invalid edge, relative to the true grid geometry, is

shown in Figure 5.14. The worst case failure angle occurs at approximately 64◦ from

the surface normal, which is beyond practical view angles in the presence of DOF

blur. Delanuay triangulation is therefore a suitable method for nearest neighbour

identification during close-range imaging of a rectilinear grid.

5.2.7 Grid Axis Alignment

To reduce the degrees of freedom in the interframe optimization and to simplify the

topology construction process, principal grid directions of the quadrilateral (quad)

representation are aligned between frames. In the first frame of a video sequence,

a quad near the centre of the image is chosen, and two of its orthogonal edges are

selected to define the principal directions of the grid structure. All quads identified in

the previous pruning stage are then permuted such that the vertices follow a common

order, defined by the principal grid directions.

In all following image frames, a quad near the image centre is chosen, and its edges

that best match the previous principal grid directions are selected as the defining

vectors in the current frame. All quads are then permuted to have a common vertex

ordering, based upon the principal vectors. Sample output is shown in Figure 5.15,

with each colour indicating a specific vertex identification in the common ordering.

The orientation of all quads is the same after permutation, simplifying subsequent

processing stages.

5.2.8 Topological Structure Formation and Filtering

From the collection of vertices forming quad structures, neighbours can be joined to

record the topological structure of the grid. Vertices are chosen to be nodes in the

topological representation (as opposed to quads for example), because each vertex

has a metric value associated with it. This approach allows the later optimization to

overlay grids and directly compare metric values at nodes of the representation.

129

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.15: Vertex ordering relative to principal grid directions. Each colour indi-
cates the position of a vertex in the common ordering, with each quad oriented in the
same way.

A vertex near the image centre is used as a seed, and a breath-first traversal

of the topology is performed using a FIFO queue. Many representations of vertex

neighbour relationships are possible, but for the rectilinear grid in this work, a simple

two dimensional array containing vertex IDs is sufficient. The two dimensional nature

allows neighbour relationships to be quickly constructed from the grid, and even if

occasional vertices are missed or rejected, the topology beyond the missed element

may be filled in from alternate directions. Construction of the topology is summarized

in Algorithm 5.1.

The consistent ordering of vertices in the quad structures (with respect to the

principal grid directions) enables rapid topological filtering. Of the quads containing

a specific vertex, that vertex ID should appear at a unique position in each quad.

Any repeat of vertex location indicates that quads are superimposed on one another,

which is not physically possible for the grid chosen. These ambiguous cases indicate a

local failure of thresholding or damage to the physical grid surface, so no neighbouring

vertices are queued. The damaged portion of the topology will be filled in, as much as

possible without ambiguity, by processing of vertices that approach the region from

different directions.

130

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Algorithm 5.1 Grid Topology Construction

Queue vertex that is near image centre
while Queue not empty do

Retrieve vertex from head of queue
if Vertex ID not already visited/processed then

Record vertex ID and metric value in the topology matrix
Scan the quad structures and find all edge-connected neighbouring vertices
if More than 4 quads contain vertex, or non-unique positions in quads then

Finish loop iteration
else

Queue all neighbouring vertices, and record addresses where they should
exist in the topology matrix (relative to the current position)

end if
end if

end while
return Completed topology matrix, containing metric values and IDs of associated
vertices

A second inherent filter stage is also performed during topology construction.

When a vertex is being processed, all quads that contain that vertex ID are located.

If there are more than four quads containing the vertex, the direct conclusion is that

more than four squares join together at a point. This is not physically possible for a

rectilinear grid, and so identifies an ambiguity that must be rejected. No vertices are

queued in this situation, as the correct neighbours cannot be identified.

Additional Filtering

A topological filtering stage is used to prune vertices from the grid structure that

have only one edge connection. These correspond to nodes lying at the end of a

single edge, usually near the image periphery, and have doubtful fidelity because

there are no supporting topological connections from alternate sides. The pruning

stage simply traverses the topological grid representation, and removes any vertices

that have a single edge-connected neighbour.

A final filter removes any regions where repeated vertex IDs exist. These cases

indicate that edges have formed a triangle, which is inconsistent with the physical

grid structure.

131

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

5.2.9 Geometric Filtering

In seriously damaged or marginally lit portions of a grid image, regions of incorrect

topology may pass through previous filtering stages. To catch these instances, the ge-

ometric properties of the grid topology are considered by correlating vertices with the

connected component centroids that they represent. For each square of four vertices,

the filter simply compares opposing edges, and verifies that they are of comparable

length. Although the square may appear as a skewed rectangle after imaging, oppos-

ing edges should be relatively uniform in magnitude. Significant difference between

them indicates a keystone or other physically implausible shape.

Examples of the topologies extracted by the described stages are shown in Fig-

ures 5.16, 5.17, and 5.18. For reference, the sequential filtering stages are:

1. Topological: Unique vertex position in ordered quad structures.

2. Topological: At most four quads containing single vertex.

3. Topological: Pruning of terminal vertices that have no supporting edges.

4. Topological: Repeated vertex IDs are invalidated.

5. Geometric: Keystone and non-rhomboid grid geometries are rejected.

5.3 Interframe registration

To determine the interframe motion between two images, the topological grid repre-

sentations are integrally shifted across one another. The best match in terms of an

objective function is selected as the correct registration. A previous processing stage

aligned the principal grid directions between frames, eliminating rotation as a degree

of freedom in the registration. The resultant search space, consisting of discrete shifts

of the grid topologies, is small enough that an exhaustive search is tractable.

5.3.1 Optimization Objective Function

Optimization of the interframe grid motion is based on an objective function that

measures the quality of grid registration for a given estimate. Using the topological

132

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c)

Figure 5.16: Sample topology data from a deformed metal dome.

133

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c) (d)

Figure 5.17: Sample topology data from a deformed metal dome, with unfiltered
output shown in (c), and filtered output in (d). For this image the original data is
well formed, and no vertices are filtered out.

134

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

(c) (d)

Figure 5.18: Sample topology data from a deformed metal dome, with unfiltered
output shown in (c), and filtered output in (d). Grid damage and poor lighting in the
high curvature region cause the extracted topology to be malformed. The filtering
stages reject these regions.

135

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.19: Optimization objective function for typical interframe motion, with large
downward spike indicating the minimum objective value, and thus the best interframe
grid registration.

grid representation (Gk for frame k), the optimization is fully decoupled from image

coordinates or feature locations. The objective function F (i, j) is the sum of squared

differences between grid element metrics for an interframe shift of (i, j) grid units,

plus a linear penalty term P (i, j) based on the 2-norm of the shift.

The following objective function for the optimization is proposed:

F (i, j) =
∑

(x,y)|(x,y)∈Gk

(x+i,y+j)∈Gk−1

(σk
x,y − σk−1

x+i,y+j)
2 + P (i, j) (5.3)

The metric σk
(x,y), as defined by Equation 5.2, is the ratio of thresholded pixels that

are active within a given connected component (nthresh), to the number of pixels in a

filled/convex hull instance of the component (ntotal). The coordinate convention (x, y)

refers to the 2D location of the connected component in the topological representation.

A plot of the objective function (5.3) for typical interframe motion is shown in

5.19. The global minimum represents optimal interframe grid registration, and thus

corresponds to the motion between frames.

136

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.20: Objective function side view for a typical frame. Function mean value,
and strongest two minima are marked with black lines. Measurements m1 and m2

used to define rm are shown.

5.3.2 Interframe Transform Computation

The grid representation uses connected component centroids as vertices. Using the

output from grid registration (optimization), each vertex can be cast from the topo-

logical representation back into image coordinates. Within this process, interframe

correspondences between connected component centroids can be established. These

correspondences provide the required input, in image coordinates, for computation of

the interframe transform. It is important to note that although the topological grid

shift is an integral number of grid units, once cast back into image coordinates, the

transform is computed to pixel accuracy.

The homography relating the two image frames can be calculated using multiple

techniques [60]. Computation typically involves a linear estimate followed by a non-

linear optimization to refine the solution.

137

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table 5.1: Experimental results. Statistics on the ratio rm are shown from four
experimental video sequences, and the number of frame pairs with an rm value larger
than a threshold are listed. Correct interframe motion tracking was obtained for all
frames.
Sequence Number Mean Standard Maximum value # frames # frames
number frames of rm deviation of rm rm > 0.9 rm > 0.8

1 1100 0.4740 0.0823 0.9100 1 2
2 550 0.4837 0.0790 0.8552 0 3
3 1800 0.4773 0.0794 0.8886 0 2
4 900 0.4865 0.0756 0.7997 0 0

5.4 Experimental results

Tests were performed on various experimental calibration data sequences to validate

the algorithm and verify robustness in changing range, focus, and lighting conditions.

Figure 5.21 shows an example result with both the current and previous frame grid

topologies overlaid, and the detected interframe motion indicated by arrows. Table 5.1

shows results from four independent video sequences, with statistics provided on the

ratio (rm) between the magnitudes of the largest and second largest minima in the

optimization objective function. Figure 5.20 shows the measurements m1 and m2,

corresponding to the strongest and second strongest minima, respectively. From

these, rm = |m2|
|m1|

. Magnitudes were measured relative to the objective function mean

value, and the ratio rm provides a measure of the contrast between the correct and

second best (incorrect) grid registrations. All calculated interframe transforms were

manually inspected to confirm correct algorithm output.

The results in Table 5.1 demonstrate robust performance by both the topologi-

cal construction process and the optimization objective function. The rightmost two

columns identify the number of frames for which the second strongest objective min-

imum was more than 90% and 80%, respectively, of the true minimum. These ratios

indicate a lower objective contrast between the correct and an erroneous grid motion.

Of the 4350 interframe transforms reported, less than 0.2% of the transforms had a

similarity ratio above 80%, and only one frame generated a ratio above 90% (ratio of

0.91). The mean values of rm report average similarities of less than 50%, with stan-

dard deviation smaller than 10%. These results demonstrate significant robustness of

138

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 5.21: Interframe motion flow field. Current frame (dark/black lines) and
previous frame (light/red lines) grid topologies shown with arrows indicating the
detected interframe motion. Background image for current frame included.

the proposed algorithm in real imaging conditions, including damaged grid regions,

and a variety of lighting and focus variations.

5.5 Summary of this Chapter

This chapter has described a novel and practical algorithm for accurate interframe

tracking of line-based camera calibration grids larger than the camera field of view.

The topological approach exploits the grid structure, and is used to reduce dimension-

ality of the projective tracking problem. Fiducial markers used to provide asymmetry

in the grid have few design requirements, affording flexibility and avoiding the need

for specific feature detectors. As an important stage in camera calibration and tri-

angulation, this work extends the literature by exploiting structure unique to such

applications.

139

Chapter 6

Calibration

Calibration is required for two aspects of the proposed surface measurement system.

First is the camera itself, which must be calibrated to enable reconstruction of world

geometry from image points. Second is the hand-eye relationship between the camera

coordinate system and the coordinate measuring machine on which it is mounted. The

hand-eye relationship allows position and pose information recorded by the CMM to

be translated into camera location and orientation, and therefore used to triangulate

points in a global coordinate frame.

This chapter briefly reviews techniques for camera and hand-eye calibrations, and

describes an approach to calibrate the system parameters. The chapter then con-

tributes two pre-processing algorithms that prepare the close-range image data as

input for planar calibration techniques. The first algorithm coherently assigns cal-

ibration model coordinates to detected feature points throughout video sequences,

and a second algorithm approximates the grid structure in highly blurred frames to

enable model coordinate tracking.

6.1 Camera Calibration

6.1.1 Calibration Methods

Camera calibration involves resolution of intrinsic and extrinsic camera parameters,

as introduced in Section 2.2.1, which model the relation between world coordinates

140

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

and image points. For a purely projective camera, linear techniques can be used

to directly solve the camera calibration problem from known world coordinates and

associated image points. Most modern camera models designed for reconstruction

accuracy, however, include lens distortion parameters which are estimated using non-

linear optimization techniques. Initialization of the problem is typically performed

linearly by omitting lens distortions, followed by iterative nonlinear refinement of all

parameters.

Early work in close-range photogrammetric calibration by Brown [11] modelled

a camera including radial and decentering distortion parameters, which are common

today in many practical camera models. The camera intrinsic parameters, including

lens distortions, are directly affected by any changes to the zoom, focus, or aperture.

Most calibration algorithms assume that intrinsic parameters are invariant across

images, and because reconstruction accuracy is a driver of system performance, a fixed

parameter camera is used for this work. Any changes to focus or aperture therefore

necessitate recalibration of the camera. Modelling and calibration of cameras with

automatic zoom lenses is considered in [174], with a resultant increase in camera

model complexity.

In the context of camera intrinsic parameter calibration, four methods (and their

derivatives) are common in the current literature. These are Tsai-based calibration

[166], Zhang-based methods [185], Heikkila [62] methods, and auto-calibration ap-

proaches [164]. The Tsai, Zhang, and Heikkila methods require calibration targets

with known feature geometries, while auto-calibration approaches use features in a

natural scene to estimate the camera parameters. Early laboratory scale camera cal-

ibration techniques used three dimensional targets, often measured accurately using

theodolites. Modern literature on calibrating from a 3D target includes Forbes et al.

[46], in which a calibration cube with uniquely coded surface markers is used, and

[184] which uses a non-coded target. Production and maintenance of accurate and

stable three dimensional targets is expensive, so planar patterns are more common in

practical calibration setups and are the focus of most current literature. Three dimen-

sional objects typically produce more stable calibration output at the cost of target

complexity, which as observed by [4], results from (1) uncoupling of the intrinsic and

extrinsic parameters, and (2) depth information that reduces the coupling between

141

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

distortion and focal length parameters. Narrow depth of field precludes the use of

three dimensional targets at close-range, so plane-based methods are exclusively ap-

plicable to this work. An interesting alternative approach, presented in [142], uses

the touch probe of a CMM as a calibration target, allowing the probe to be moved

around to produce a set of known calibration points suitable for the camera settings

and conditions.

Related work includes Bruzzone and Mangili [13], who reported an approach for

calibration of a camera fixed to the toolpoint of a gantry CMM. The technique uses

only linear formulations, and iterates between solution of camera and distortion pa-

rameters. Non-linear optimization is avoided, and reconstructed point errors from

ground truth were ≈ 0.5 mm (with 15-50 cm camera to target imaging range). This

work was performed before the current generation of calibration techniques, such as

the Zhang method, were developed.

Extensive literature is available on the common calibration techniques (Tsai,

Zhang, and others), so the approaches are not described here beyond brief summary

and reference to the critical publications.

Tsai Method

Although originally published in 1987, Tsai’s camera calibration method [166] is well

known today. Either a three-dimensional or planar calibration target can be used,

and the model includes a single radial distortion coefficient. The technique is based

on a formulation called the Radial Alignment Constraint (RAC). Modification was

proposed by Zhuang et al. [187] to handle parallel orientation between calibration and

image planes. Horn [67] performs a modern analysis of the Tsai technique, comparing

the differences in required computation between 3D and planar targets, and proposes

modification of parameter representations such as use of quaternions to represent

rotation in the nonlinear optimization.

Zhang Method

The Zhang algorithm exploits multiple views of a planar calibration target, taken

from a variety of poses. Homographies between each image and the calibration plane

features are computed, and a closed form solution is used to initialize the camera

142

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

parameters. A nonlinear optimization is then performed to refine the parameters

and to incorporate lens distortion. To obtain coherent homographies across a set of

images, the coordinates assigned to the calibration target must be consistent across

frames. A direct consequence of this requirement is the need for precise interframe

motion tracking, which then enables globally coherent coordinate assignment to the

calibration plane features.

As observed by Zhang, in many real cameras distortion is dominated by radial

components, and more extensive models not only produce negligible improvements,

but can produce numerical instability in the optimizations [185]. As a consequence,

the Zhang approach as originally formulated accounts for two radial distortion coef-

ficients, and no tangential or other more complex terms. A formulation of the Zhang

calibration approach is described in Appendix B, so further details are not provided

here.

Work by Ricolfe-Viala et al. [133] extends the Zhang method through pre-processing

to correct for lens distortion, and data normalization (mean and average point offset)

to better pose the calculations. They also observe that the position of model points

should be included in the nonlinear optimization, as opposed to assuming correct

target geometry.

A calibration algorithm that avoids nonlinear optimization is presented by Sanchez

et al. [159]. The results of the approach are compared with the Zhang method,

both before and after Levenberg-Marquardt optimization. The Sanchez calibration

results are similar to the final Zhang post-optimization output, but are superior to

the initial linear estimate produced by the Zhang approach, which disregards radial

lens distortion. Final results from both methods are comparable.

Autocalibration Methods

A series of autocalibration approaches have been developed and are actively re-

searched in the literature [153, 8, 162, 51], with the common element that a specific

calibration target is not required. The methods instead derive calibration informa-

tion from one or more views of a static scene. Such an approach provides significant

flexibility by avoiding the need for specific targets or calibration configuration, but

143

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

adds complexity and uncertainty through lack of a known target geometry. In ap-

plications where reconstruction accuracy is required, autocalibration approaches are

not yet reliable [9].

Avoiding Feature Extraction

A recent advance in camera calibration has been reported by Douxchamps et al. [34].

They observe that design of calibration features involves a tradeoff between large

size for decreased noise sensitivity and good localization accuracy, versus small size

for reduction of optical distortions. They then propose a state of the art calibration

scheme that does not involve feature extraction, but rather uses an iterative estimate

of the camera parameters to model the planar calibration target using raytracing.

The raytraced image is compared with the real data, and iterative optimization used

to refine the model parameters. Various sources of noise are modelled and tested, with

detailed results and analysis. They further propose that this method is applicable not

only to camera calibration, but also to general 3D reconstruction tasks. With further

research and extension to optically accurate raytracing of DOF blurred images, this

approach could potentially be applied to close-range imaging applications.

Bundle Adjustment

Bundle adjustment is a fundamental optimization process commonly used as a final

stage in 3D reconstruction and camera calibration algorithms. The idea is that the

world feature point locations and camera parameters are simultaneously adjusted to

minimize image reprojection error. Triggs et al. [165] provide a survey and good

description of the approaches for bundle adjustment, including formulation to exploit

sparse structure in the underlying data relations. Further description is provided by

Hartley [60].

6.1.2 Comparison of Calibration Techniques

With the large number of camera calibration techniques that have been proposed in

the literature, an obvious question is how the techniques compare with each another,

and which methods are best for specific applications. Key points of comparison relate

144

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

to accuracy and stability of the individual calibration parameters, and also resilience

to noise in both the image feature detection and physical calibration target geometry.

Salvi et al. [135] describe the Tsai, Hall [56], Faugeras [38], and Weng [173] cali-

bration algorithms using a common notation, and then compare them in the context

of 3D reconstruction accuracy and image reprojection error using a common data set.

A conclusion is drawn that nonlinear techniques are required to provide reconstruction

error less than 0.1 mm (for the system tested), and furthermore that radial distortion

modelling is sufficient when high accuracy is required. The Tsai method performed

slightly better in terms of accuracy than the Wang method, and significantly better

than the other algorithms tested.

Zollner and Sablatnig [188] compare the Tsai, Zhang, and Heikkila calibration

methods. They concluded that all provide reliable results, but that the Tsai method

is superior when using only a single view of a calibration plane with radial distortion.

For calibration from multiple views, they conclude that the Zhang method exhibits

superior convergence properties.

Gonzalez et al. [53] compare eight calibration methods, including the Tsai, Zhang,

and Heikkila methods. They conclude that Batista’s method [7] provides the most

stable results, while Tsai’s method produces stable extrinsic paramaters, but poor

focal length estimates. They further conclude that the Heikkila algorithm estimates

target distance effectively, but performs poorly for the remaining parameters. An

important observation is that the reprojection error magnitudes produced by most

tested algorithms after nonlinear optimization were comparable, but such a result

does not imply that the camera parameters are correct. Comparable reprojection

errors were obtained for significantly different calibration parameter results across

the methods. This is likely a result of local minima in the optimization formulations,

and also the existence of multiple solutions that similarly reduce the error. It is well

known that initialization of a nonlinear optimization for calibration must be close to

the true parameter values.

Sun and Cooperstock [155] studied the Tsai, Zhang, and Heikkila methods in the

context of input data quantity and noise. For real world data, they find the Zhang

method to be superior in the sense that it produces good results without meticulous

attention paid to the experimental setup. The alternative methods considered were

145

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

found to be much more sensitive to measurement noise. Results are reported from

the Zhang method at a target range of ≈ 40 cm, producing reprojection error on

the order of pixel quantization error. Finally, Sun and Cooperstock conclude that a

second order radial distortion term is sufficient for practical modelling, but that for

lenses with totally unknown distortion characteristics, a decentering term is worth

including in the formulation.

Swapna et al. [158] consider accuracy of calibration based on the Heikkila ap-

proach in the presence of various error sources. The camera intrinsic parameters are

perturbed, and the effect on reprojection error analyzed. They draw the conclusion

that interactions between the intrinsic parameters may prevent calibration from con-

verging to a true minimum in the presence of image measurement error. Further

simulation then leads to the conclusion that focal length and radial distortion er-

rors lead to insignificant changes in reprojection error, making it difficult to calibrate

these parameters. The paper then draws the conclusion that radial distortion need

not be considered in camera modelling, a result contrary to a much of the published

literature. A final experiment perturbs the calibration plane feature locations using

Gaussian noise, and considers the sensitivity of the intrinsic parameters to this error.

Resultant errors in the principal point were more than 4% of the nominal value (for

errors of 0.1mm on the calibration plane), leading to the conclusion that the Heikkila

algorithm is sensitive to error in the calibration target, and that printed targets should

not be used for high accuracy calibration. In light of previous comparison work (such

as [53]) which conclude that the Heikkila method does not produce stable results in

the presence of noise, the conclusions from Swapna et al. are not surprising.

6.1.3 Accuracy of Calibration Patterns

Albarelli et al. [4] consider planar calibration patterns for which the physical feature

locations are not exact, such as in laser printed grid approximations. The calibration

object geometry is optimized alternately with the camera parameters to minimizing

image reprojection errors, and calibration is based on the Zhang approach. This

approach generalizes the calibration plane uncertainties proposed by Strobl et al.

[152], and generates a number of important results. Of interest to this thesis are

two primary results. First, by optimizing the calibration target model there is a

146

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

noticeable improvement in calibration accuracy (≈ 60% reduction in metric error)

for laser-printed calibration grids, which are commonly used in modern calibration.

This result indicates that unless a high quality professional calibration target is used,

calibration target errors should be considered in the formulation.

A second important result follows from the inclusion of two different images sets

in the testing. The first set was obtained using camera imaging angles up to 15◦ from

the plane surface normal, while the second set allowed the imaging angle to increase

up to 30◦. The 30◦ images produced better convergence, and less measurement error

(≈ 55% reduction in metric error) compared with the 15◦ data set. More importantly,

at close imaging distances (< 30 cm), there was noticeable gradient in the reconstruc-

tion output as the camera range changed. It is expected that with increased camera

vergence angles, the reconstruction error should decrease because the problem is bet-

ter constrained by the data set. In the close-range imaging application of this thesis,

DOF blur prevents large camera vergence angles, although 30◦ imaging is reasonable.

The Albarelli et al. results show that calibration from these angles can be stable, and

that larger angles are preferred at close range. The improved accuracy from larger

angles must be considered in concert with the reduction in grid intersection measure-

ment accuracy caused by increasing DOF blur. Imaging angles on the order of 30◦

are a reasonable compromise.

Lavest et al. [84] examine whether an accurate physical 3D calibration pattern

is required to obtain valid camera calibration results. For a single image of the

calibration target and a least squares linearized approach, they find that a physical 3D

target error larger than 2 mm3 causes non-convergence of the algorithm. A multiple

view calibration technique that adjusts the estimated feature points is then described,

with the conclusion that subpixel accuracy of image point detection becomes more

important than 3D target accuracy when multiple views are available. Their results

imply that with image feature detection accurate to 0.01 pixels, calibration results

are stable and accurate.

Mallon and Whelan [104] study the effect of calibration pattern choice in the pres-

ence of projective imaging and lens distortions, considering resultant biases from cir-

cular and checkerboard feature patterns. They find that only corner features (checker-

board) are free from lens distortion bias, and recommend that if circular dot patterns

147

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

are used, then each circle diameter should be less than 10 pixels as imaged.

6.1.4 Choice of Camera Calibration Technique

Within this work, a 2D calibration target is required because of narrow camera DOF.

Multiple images of a planar target from a variety of poses can be obtained using the

same data capture approach as in part scanning. For flexibility it is preferable to use

a calibration target that does not have precisely pre-measured feature points (better

than 1 part in 1000 measurement [152]), but rather has regular features that are

approximately measured using accessible techniques such as an optical comparator.

The calibration algorithm must then refine the model of the calibration plane feature

locations to account for measurement errors. To be consistent in feature detection

methodology, an orthogonal line-based grid is chosen for the planar calibration target,

with measurement using the implementation of Chapter 4. The approach proposed by

Strobl and Hirzinger [152] is therefore selected. It is based on the technique, which as

demonstrated by multiple sources described previously, exhibits better convergence

properties in the presence of noise compared to other well known algorithms. A

consequence of the multiple calibration plane views, however, is the requirement for

pre-processing of the close-range image data to prepare it for calibration use.

6.1.5 Hand-eye Calibration

Hand-eye calibration involves the determination of a rigid transform between an end

effector coordinate system (robot or CMM), and the internal coordinate system of a

camera or sensor mounted to the end effector tool point. Significant literature is avail-

able on this subject, such as [66, 32, 24], but a thorough review is beyond the scope of

this thesis. Of relevance is recent work by Strobl and Hirzinger [151, 152]. The first

publication ([151]) reviews the hand-eye calibration problem and existing literature,

and then describes a technique for hand-eye calibration that aims to be optimal in the

presence of Gaussian measurement errors. The second publication ([152]) addresses

the issue of camera calibration target scaling uncertainty, and develops a calibration

formulation based on the Zhang [185] approach. Target scale and aspect ratio are

included in the non-linear optimization, with scaling information obtained from the

148

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

CMM/robot motion information that is not available in classic camera calibration.

Two approaches for combined camera (Zhang-based) and hand-eye calibration are

then described.

A significant portion of the modern hand-eye calibration work relies on quaternion

[81, 57] representations of rotations, which provide advantages when rotations must

be adjusted within non-linear optimizations.

The work by Strobl and Hirzinger [152] provides a direct approach that solves

both the camera and hand-eye calibration parameters in the system described by this

thesis, so is selected for implementation. The approach is based upon the Zhang

calibration method, which is the preferred camera calibration approach (regardless of

the Strobl work), as described previously. A prerequisite requirement for calibration,

therefore, is a collection of image sequence pre-processing algorithms that prepare the

image data for use by a Zhang-based calibration procedure.

6.2 Pre-processing for Camera Calibration

Zhang based calibration requires a homography to be computed for each image. The

homography relates the image feature point coordinates to global coordinates of a

model calibration plane. In typical applications of the Zhang algorithm, the entire

calibration target is in view including boundaries. The plane boundaries can then

be used to identify the unique calibration plane address of each imaged feature. In

close-range imaging only a portion of the grid is visible, so global plane directions and

coordinates must be coherently assigned to enable the calibration process. Chapter 5

described a novel algorithm to track interframe motion across a video sequence, which

can be applied to tracking of the interframe calibration grid motion. This section

describes two algorithms, one for coherent assignment of coordinates to the calibration

plane using interframe transforms from the topological tracking approach, and the

second to handle sequences of highly blurred frames without loss of grid assignment

consistency.

149

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

6.2.1 Model Grid Coordinate Assignment

The calibration plane feature points must be assigned unique model coordinates,

and although the scaling and orientation can be arbitrary, the assignment must be

consistent across frames. Directions used as the axes in coordinate assignment should

correspond to the principal directions of the target grid lines. Coordinate assignments

to the calibration grid features are named the “model grid coordinates” in this work,

with the “model grid” referring to features on the ideal calibration grid surface. To

obtain views of the calibration plane from a variety of poses without losing coherence

in the coordinate assignment, video sequences are captured, and motion between

frames tracked using the algorithm described in Chapter 5.

Output from grid line intersection measurement is a set of feature points from the

gridded surface, with no relative positioning in the grid structure available. Noise

and damage to grid lines causes some intersections to be rejected, therefore leaving

an incomplete set relative to a completed grid. Algorithm 6.1 has been developed

to robustly assign model coordinates to the measured line intersections in an image,

and is a required pre-processing step before homography computation and subsequent

calibration.

Considering a set of grid line intersection features, there are multiple directions

that encounter line intersections at regular intervals. Two of these directions corre-

spond to the grid line axes, while the remainder form diagonals across the grid. To

avoid ambiguity in projective imaging conditions, estimates of the grid line directions

are output by the scale-space ridge detection algorithm. The matched ridge segments

used to interpolate intersection locations are directly derived from the imaged grid

lines, so provide a good estimate of the principal directions. A flat plane is used for

calibration, so in practice the principal grid directions remain relatively consistent

across an image.

The direction vectors D1 = [x1 y1]
T and D2 = [x2 y2]

T encode not only the

direction of the two principal grid directions, but also the expected distance between

intersections in the corresponding direction. A model point Mi = [x y]T is assigned to

the ith detected intersection point in an image, and corresponds to the “model grid

coordinate” used in later calibration. These coordinates must be consistent across

all images of the calibration plane. The model coordinates Mj = [a b]T are assigned

150

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

to the image coordinates of a detected feature j, with the image feature coordinates

denoted by Ij = [u v]T (in the image coordinate system).

Algorithm 6.1 Model Grid Coordinate Assignment - Recursive Seeding

while Frames to process do
if First frame then

Find intersection with four nearly equidistant surrounding points (pairwise)
Assign this intersection to Iseed
Mseed = [0 0]T

Choose two neighbour points whose vectors correspond to principal grid
directions estimated during scale-space ridge measurement

if Chosen directions do not form a right handed system then
Perturb order of directions to form right handed coordinate system

end if
Assign estimated principal grid directions to D1, D2

AssignCoordinates(1, Iseed, Mseed) ⊲ Algorithm 6.2
else

Match a current frame intersection to previous frame using inverse inter-
frame transform (H−1)

Assign matched intersection location and previously assigned model coordi-
nates to Iseed, Mseed

Correlate current frame principal grid directions to previous frame directions
and assign as D1, D2

AssignCoordinates(1, Iseed, Mseed) ⊲ Algorithm 6.2
end if

end while

Key features of the algorithm are that missed intersection points are tolerated, and

the expected distance between grid feature points dlocal adapts to local conditions as

the algorithm progresses further from the seed point. Figure 6.1 shows the progression

of the algorithm on a sample image, with colours representing different instances of

the procedure. Figure 6.2 shows sample output after model coordinates have been

assigned to detected grid line intersections.

151

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a)

(b)

Figure 6.1: Intersection traversal example during model grid assignment. (a) Original
image with detected intersections and, (b) arrows indicating path of model coordi-
nate assignment traversal, with colours indicating different instances of the recursive
assignment function.

152

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) Sample frame 150.

(b) Sample frame 214.

Figure 6.2: Sample model grid coordinates assigned to detected feature points.

153

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Algorithm 6.2 Recursive Coordinate Assignment

Require: Detected image feature set I, principal grid direction estimates D1, D2

procedure AssignCoordinates(n, Iseed, Mseed)
if n > 2 then

return
end if
Search for detected intersections in direction ±Dn:
dlocal = Dn

while Searching inside image boundary do
Image point [u v]T = [u v]T ± dlocal
Update model coordinate M based on the direction n and grid unit steps

taken from the seed point Mseed

Find nearest intersection Ij to [u v]T

if Intersection within threshold distance then
Assign model address M to intersection Ij

end if
AssignCoordinates(n+1, [u v]T , M)
Update dlocal as vector from previous point [ut−1 vt−1]

T to current point
I = [ut vt]

T

end while
end procedure

154

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

6.2.2 Hough Approximation for Strongly Blurred Frames

Coherent assignment of coordinates requires an assigned intersection in a previous

frame to be correlated with an intersection in the current frame. This correlation

provides a translational grid registration between frames, and leads to the coordinate

seed from which recursive assignment across an image begins. When frames are highly

blurred, the scale-space measurement process may reject most or all intersections due

to uncertainty in parabola fitting. These highly blurred situations often occur in a

consecutive sequence of frames as the camera operator reacquires reasonable focus.

Registering an intersection correspondence across the poor frames requires that the

individual interframe transforms across the blurred sequence be compounded to form

a composite interframe transform, bridging the severely blurred set.

In practice, registering coordinates across blurred sequences using compounded

interframe transforms is not reliable. The true interframe transform should ideally be

computed from corresponding feature points at either end of the blurred sequence, but

these correspondences are not available. The estimated transform (from individual

interframe tracking) contains compounded errors, and in practice leads to incorrect

feature correlation across sequences on the order of 20-30 blurred frames.

To resolve the registration problem across blurred sequences, coarse grid line inter-

section locations are extracted, and coordinates assigned to these points in the same

manner as accurately measured intersections. Although the coarse estimates cannot

be used for calibration purposes, they effectively correct the grid registration at each

subsequent frame, preventing large compounding of errors and incorrect registrations.

The contributed coarse intersection location algorithm uses a Hough-based line

detection approach, with a k-means clustering to classify the grid line directions.

The process is summarized in Algorithm 6.3.

As described in Chapter 5.2.1, the Shafait [141] local adaptive thresholding method

performs well when binarizing close-range images of a gridded target. Using the

thresholded output, the well known Hough transform [35] is used to estimate the

characteristics of lines in the image. Matlab implementations of the Hough transform

and supporting functions were used for this work, as provided in the MathWorks

Image Processing Toolbox. To provide robustness, a hierarchical back-off approach

is used when selecting the Hough algorithm parameters. The image is first tested

155

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Algorithm 6.3 Coarse Intersection Estimation

Image threshold operation (Shafait-based)
repeat

Calculate Hough transform
Extract peaks from Hough accumulator bins
Extract line segments corresponding to Hough peaks and generate statistics
Relax Hough parameters (to prepare for next iteration if it is required)

until More than threshold number of lines detected or iteration limit reached
Classify lines according to angle (batch 2-means)
Reject lines not belonging to the primary angle classes
Intersect lines from disparate angle classes
Record intersections that fall within the image boundaries

Table 6.1: Implemented Hough Parameters
Pass Threshold (% max accumulator value) Suppression radius Max peaks
1 70% 1

60
image dimension 1000

2 60% 1
60

image dimension 1000
3 40% 1

40
image dimension 10000

with strict parameters, and if a suitable number of grid lines are not detected, then

they are relaxed and the process repeated. The set of Hough parameters used for

this work, which were successful on hundreds of image frames tested, are listed in

Table 6.1.

Following the Hough transform and accumulator bin peak detections, line seg-

ments are extracted from the image corresponding to the accumulator bin peaks.

Disconnected line segments falling into the same parameter bin are connected, and

segments less than approximately half of the image dimensions are rejected. The

remaining set of lines are summarized in terms of angle and perpendicular distance

from origin in preparation for classification.

Perpendicular grid lines must be intersected to approximate the true line inter-

sections, so the well known k-means clustering algorithm [36] is used to isolate the

two primary modes of line direction, and to reject outlier lines corresponding to noise

and surface artifacts. At a basic level, the k-means algorithm identifies clusters of

points in a parameter space by minimizing the aggregate distances between cluster

means and points across the data set. In the case of the grid line angle classification,

156

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

there should be two primary clusters corresponding to the two sets of lines that are

perpendicular to each other. Under perspective imaging the lines may not appear to

be orthogonal, but they still form disparate angle classes suitable for classification

through cluster analysis. Batch 2-means clustering is therefore applied.

The angle of a line with respect to the primary image axis is the driving parameter

behind clustering. The difference between angles is inherently a cyclic function, with

an integral difference of 2π radians corresponding to the same angle. The grid lines

to be detected are not directed, so integral differences of π radians in fact correspond

to the same line direction. During the k-means clustering process, a distance function

must be provided to calculate the distance between a specific point and the cluster

means in the parameter space. The cyclic nature of angular distance precludes the

use of typical metrics such as Euclidean or Hamming distances. Instead, a custom

distance function was developed for this application, and can be expressed as:

dk = 1− |cos(θ1 − θ2)| (6.1)

A plot of the distance function is shown in Figure 6.3, with all angles expressed

in radians. A linear distance function approximating the shape of Equation 6.1 could

be constructed, but the cosine based approach has an advantage of reduced distance

sensitivity for small angular values.

In images that are highly blurred or that have large surface defects, erroneous lines

may be extracted during the Hough process. These lines typically appear as outliers

from the k-means clusters, so can be rejected based on distance from the parent

cluster mean. For this work, lines with an angular distance of more than π
8
radians

from the mean are rejected. This filtering removes most outlier lines, but any that

survive form approximated intersections on the image plane. These are then rejected

either during the model coordinate assignment process (which looks for integral grid

spacing steps between points), or are rejected as outlier point correspondences during

homography computation immediately prior to camera calibration.

Figures 6.4 and 6.5 show typical output from the intersection estimation process

for blurred image frames. The detected Hough lines are shown in (a), followed by

the k-means classified output in (b) with the class represented through colour. Lines

detected through the Hough process but not considered to be inliers in the k-means

157

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Figure 6.3: Distance function for k-means clustering of line angles.

clusters are rejected, as seen in Figure 6.5.

6.3 Summary of this Chapter

This chapter has reviewed state of the art literature on camera calibration and selected

an approach for both camera and hand-eye calibration of the monocular CMM-based

system developed by this thesis. Pre-processing algorithms have been contributed

that enable the use of close-range planar image data in Zhang-based calibration

techniques. Further description of the Zhang calibration algorithm is provided in

Appendix B.

158

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

(a) (b)

Figure 6.4: Sample output from grid line approximation. (a) Detected Hough lines,
(b) k-means classification shown by line brightness/colour.

(a) (b)

Figure 6.5: Sample output from grid line approximation, with outlier lines rejected
by the k-means classification. (a) Detected Hough lines, (b) k-means classification
shown by line brightness/colour.

159

Chapter 7

Conclusions

This thesis has presented a system design for close-range, gridded surface measure-

ment, and has contributed algorithms that solve a number of challenges, principally

related to narrow depth of field effects. The motivating sheet metal surface strain

application was described by Chapter 1, and development of a monocular CMM-

mounted camera system concept provided by Chapter 2 included reasoning behind

selection of the close-range imaging approach. Human manipulated imaging of sur-

faces at close-range leads to a number of challenges that were addressed by the re-

mainder of the thesis.

Chapter 3 examined the problem of accurate grid line intersection measurement

in the presence of varying target range and DOF blur. Approaches using standard

feature detectors were considered, followed by description of a scale-space ridge ex-

traction based technique to retrieve dense grid line data in varying scale conditions.

Computational intensity of the algorithm was considered, with the conclusion that

the algorithm is not suited for video frame-rate implementation on a CPU.

Chapter 4 provided an introduction to GPU hardware in the context of gen-

eral computational acceleration, followed by description of the algorithm design for

GPGPU-based acceleration of the computationally intensive scale-space algorithm.

Accuracy analysis using synthetic raytraced data has validated subpixel measurement

performance in the presence of varying levels of DOF blur, producing error variance

levels on the order of 0.05-0.1 pixels2 for DOF blurred images. Speed and resource

utilization results from GPGPU implementation were presented, demonstrating video

160

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

frame-rate processing speeds.

Finally, robustness of line intersection measurement in real images was experi-

mentally shown using a series of video frames, demonstrating that missed intersection

detections are not persistent, except in the presence of physical grid line damage.

From a triangulation error perspective, close-range imaging can provide an im-

proved formulation for high accuracy measurement in the presence of noise. Multiple

results have confirmed that grid line intersection measurements from close-range imag-

ing, even when corrupted by DOF blur, can be performed robustly. It was further

confirmed that scale-space ridge extraction is a suitable approach for close-range grid

line measurement, and that the scale-space algorithm can be accelerated to video

frame rates with state-of-the-art GPGPU hardware using the proposed architecture.

Chapter 5 described a novel approach for interframe motion tracking of gridded

surfaces in the presence of varying DOF blur. The approach exploits topological

structure of the grid to reduce dimensionality of the interframe registration problem,

and intrinsically measures fiducial markers, removing the need for explicit feature

detectors.

Implementation results were presented demonstrating robustness through statisti-

cal metrics on the optimization objective function, and through processing of multiple

video sequences in which correct and accurate tracking has been manually verified.

Contrast results between the objective global minimum and the second strongest min-

imum demonstrate algorithm robustness across thousands of video frames, including

a variety of lighting, focus, and grid damage conditions.

System calibration was considered in Chapter 6, and a general approach put for-

ward. Close-range imaging introduces challenges not encountered by classic calibra-

tion target views, so pre-processing algorithms were proposed and described such

that the image sequences can be used as input for calibration algorithms. Sample

results were presented from the model grid coordinate assignment and blurred grid

approximation algorithms. Testing on image sequences with thousands of frames,

including manual verification of correct grid coordinate assignment, has been per-

formed. The techniques contributed by this chapter enable use of close-range image

data for calibration using modern, state-of-the-art algorithms.

The techniques and algorithms contributed by this thesis make significant progress

161

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

toward enabling video frame rate, close-range optical computer vision for sheet metal

surface strain analysis, and other applications where challenging image conditions

impede conventional surface measurement.

7.1 Future Work

The contributions by this thesis solve a number of challenges imposed by close-range

imaging conditions, and lead into a major subsequent research task, that of system

calibration and calibrated parameter stability analysis. This thesis, while restricted to

the machine vision aspects required to enable the calibration and part scanning pro-

cesses, has provided the necessary techniques to enable calibration. Zhang-based [185]

calibration using the modifications and extensions proposed by Strobl and Hirzinger

[152] may provide the basis of future work.

In the context of calibration, future work can include a detailed study of the stabil-

ity of parameters as affected by camera pose uniqueness, target distances, and spatial

coverage of the calibration target. A trade-off analysis between the camera-to-target

vergence angle and consequent DOF blur can be performed to suggest the preferred

camera viewing angles that produce stable and reliable results in the presence of nar-

row DOF. It is expected that translating the camera to view a large portion of the

calibration grid surface should produce improved calibration stability in combined

camera/hand-eye calibration (reduced affect of CMM measurement errors), but this

remains an open problem to be studied and verified.

The approach developed in this thesis requires human manipulation of a monocu-

lar camera to avoid robotic path programming, and to provide flexibility in rapid and

adaptive scanning by an operator. Human manual manipulation of the close-range

camera can lead to poor focus in many image frames and, potentially, regions of a

scanned part that have insufficient data for accurate reconstruction. Some companies

now offer articulated arm CMMs that include motorized joints. During normal mea-

surement, a human can manipulate the arm while it passively measures position and

pose. The motorized joints could then subsequently be activated to automatically

follow the same path as taught by the human operator, or to perform other motions.

162

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

A future extension of the current system could include a motorized arm CMM, al-

lowing a human operator to roughly scan the part surface to provide an approximated

geometry, without sacrificing flexibility in industrial environments. The motorized

arm could then automatically rescan the surface, correcting for range and speed re-

lated focus problems, and providing additional views of regions with insufficient data.

The key enabler for this type of approach, in addition to the robotic CMM, would

be the use of scale-space ridge detection to provide a measure of the level of blur in

a specific portion of the image (scale of detection). The surface grid lines applied on

a part surface are typically of uniform width, so detection of scale could be directly

used as a measure of the blur. This information can provide feedback for automated

optical guidance of the robotic CMM, allowing correction of focus without sacrificing

system flexibility.

Within this thesis, a line based grid pattern was chosen for metal surface mark-

ing, as justified in Chapter 2. To obtain fine strain gradient measurement in large

curvature parts, the marking pattern could be modified to a finer scale. A natural

feature that can be tightly packed is a simple dot, so part surfaces could be covered

in fine scale dots prior to deformation. Approaches for production of this pattern

include photographic and inkjet printing. Optical surface scanning allows for a vari-

ety of feature patterns to be detected, and close-range imaging enables measurement

of a fine feature scale. The resultant strain gradients should therefore be signifi-

cantly finer than those obtainable from long range imaging, and provide a means

to reconstruct surface strains on thinner materials and sharper curvatures that are

increasingly common in manufacturing.

The future work proposed in this section would directly leverage and build upon

the system design and algorithms developed throughout the thesis. The contributions

therefore potentially enable a spectrum of future work in practical close-range surface

scanning applications.

163

Appendix A

POV-Ray Scripts for Synthetic Grid

Sequence

The following scripts were written to produce rendered grid images that emulate the

real camera images of a gridded sheet metal surface. They execute in the POV-Ray

environment [129].

A.1 GridGen.ini

1 Ant i a l i a s=Off

2 Ant i a l i a s Thre sho ld =0.1

3 Ant ia l i a s Depth=2

4 Input Fi le Name=”run1 . pov”

5 I n i t i a l F r ame=1

6 Final Frame=15

7 I n i t i a l C l o c k=0

8 Fina l C lock=2

9 Cycl ic Animation=o f f

10 Pause when Done=o f f

A.2 run1.pov

1

164

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

2 #inc lude ” c o l o r s . i n c ”

3 background { c o l o r Cyan }

4

5 #dec l a r e A = <0, 0 , −1>;

6 #dec l a r e B = <0, 0 , 0>;

7

8 // ANIMATION TRANSLATE!

9 #dec l a r e p laneTrans la te = <0,0 + c lock ∗1 ,1> ;

10

11 // ANIMATION ROTATE!

12 #dec l a r e planeRotateX = (0+ c lock ∗10)∗x ;

13 #dec l a r e planeRotateY = (5+ c lock ∗10)∗y ;

14 #dec l a r e planeRotateZ = (−50+c lock ∗30)∗ z ;

15

16 #dec l a r e extent = 10 ;

17 #dec l a r e hal fLineWidth = 0 . 0 0 8 ;

18

19 #dec l a r e thePlate = box {

20 <−1∗extent ,−1∗ extent , 0>,

21 <extent , extent , 0>

22 pigment {

23 c o l o r White

24 // c o l o r rgb <0.999 ,0.999 ,0.999>

25 }

26 }

27

28 ob j e c t { thePlate

29 r o t a t e planeRotateX

30 r o t a t e planeRotateY

31 r o t a t e planeRotateZ

32 t r a n s l a t e p laneTrans la te

33 }

34

35

36 #dec l a r e theLine = box {

37 <−1∗halfLineWidth , −1∗extent , 0>, // Near lower l e f t corner

38 <halfLineWidth , extent , −0.0000001> // Far upper r i g h t corner

39 pigment {

40 // c o l o r rgb <0.9 ,0 .9 ,0 .9>

165

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

41 c o l o r Gray75

42 }

43 }

44

45 #dec l a r e halfNumHorizLines = 30 ;

46 #dec l a r e ha l fHor i zL ineSpac ing = 0 . 1 ;

47 #dec l a r e halfNumVertLines = 30 ;

48 #dec l a r e ha l fVer tL ineSpac ing = 0 . 1 ;

49

50 // Hor i zonta l g r id l i n e s

51 #dec l a r e IndY = 0 ;

52 #whi le (IndY < halfNumHorizLines)

53 ob j e c t { theLine

54 t r a n s l a t e <((1+2∗IndY)∗ ha l fHor i zL ineSpac ing) , 0,0>

55 r o t a t e planeRotateX

56 r o t a t e planeRotateY

57 r o t a t e planeRotateZ

58 t r a n s l a t e p laneTrans la te

59 }

60 ob j e c t { theLine

61 t r a n s l a t e <(−1∗(1+2∗IndY)∗ ha l fHor i zL ineSpac ing) , 0,0>

62

63 r o t a t e planeRotateX

64 r o t a t e planeRotateY

65 r o t a t e planeRotateZ

66 t r a n s l a t e p laneTrans la te

67 }

68 #dec l a r e IndY = IndY+1;

69 #end

70

71 // Ve r t i c a l g r i d l i n e s

72 #dec l a r e IndX = 0 ;

73 #whi le (IndX < halfNumHorizLines)

74 ob j e c t { theLine

75 r o t a t e z ∗90

76 t r a n s l a t e <0, ((1+2∗ IndX)∗ ha l fHor i zL ineSpac ing) , 0>

77

78 r o t a t e planeRotateX

79 r o t a t e planeRotateY

166

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

80 r o t a t e planeRotateZ

81 t r a n s l a t e p laneTrans la te

82 }

83 ob j e c t { theLine

84 r o t a t e z ∗90

85 t r a n s l a t e <0, (−1∗(1+2∗IndX)∗ ha l fHor i zL ineSpac ing) , 0>

86

87 r o t a t e planeRotateX

88 r o t a t e planeRotateY

89 r o t a t e planeRotateZ

90 t r a n s l a t e p laneTrans la te

91 }

92 #dec l a r e IndX = IndX+1;

93 #end

94

95 #dec l a r e cy l1 = cy l i nd e r {

96 <0, 0 , 1>, <0, 0 , 1.000001> , 0 .0000001

97 pigment { c o l o r Blue }

98 }

99

100 #dec l a r e th i sFoca lPo in t = t ra c e (thePlate , A, B−A) ;

101

102 camera {

103 l o c a t i o n A

104 l o ok a t B

105 // l o c a t i o n <−.1, . 2 , −.1>

106 // l o ok a t <2, −1, 2>

107 f o c a l p o i n t <0,0,1>

108 aper ture 0 .06 // almost everyth ing i s in f o cu s

109 b lur sample s 100 // more samples , h igher qua l i t y image

110 }

111

112 #dec l a r e ImageWidth = 1024 ;

113 #dec l a r e ImageHeight = 768 ;

114

115 #dec l a r e l i g h tP o s i t i o n = <0,0,−1>;

116 #dec l a r e areaLightDim1 = <2∗extent ,0 ,0> ;

117 #dec l a r e areaLightDim2 = <0,2∗ extent ,0> ;

118

167

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

119 l i g h t s o u r c e { l i g h tP o s i t i o n

120 c o l o r White

121 }

122 g l o b a l s e t t i n g s { amb i en t l i gh t White }

168

Appendix B

Derivation of Zhang Calibration

The Zhang calibration technique [185] is common in the literature, but a full deriva-

tion is not typically provided. This appendix contains a derivation that follows the

process developed and published by Zhang. The more complete development provided

here is useful when implementing and verifying associated algorithms. For detailed

justifications of steps and further textual descriptions, the reader is referred to [185].

B.1 Constraints

Begin with the pinhole imaging equation:

scm̃ = A [R t] M̃ (B.1)

where sc is an arbitrary scale factor, m̃ a homogeneous image point, and M̃ a homo-

geneous world point. Rotation matrix R and translation vector t define the camera

extrinsic parameters, and the upper triangular matrix A contains the intrinsic pa-

rameters:

A =

α γ u0

0 β v0

0 0 1

(B.2)

u0 and v0 are principle point coordinates, α and β are the scaling factors, and γ

169

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

defines skew between axes.

Define the Z coordinate of the model plane to be Z = 0, leading to:

s

u

v

1

= A

[

r1 r2 r3 t
]

X

Y

Z

1

(B.3)

= A
[

r1 r2 r3 t
]

X

Y

0

1

(B.4)

= A
[

r1 r2 t
]

X

Y

1

(B.5)

where ri is the i-th column of the rotation matrix R.

As a result of the model plane being defined on the Z = 0 plane, and redefining

M̃ =
[

X Y 1
]T

, the image and model points are related as:

sm̃ = A
[

r1 r2 t
]

M̃ (B.6)

sm̃ = HM̃ (B.7)

where m̃ are the two-dimensional image coordinates, and M̃ are the two-dimensional

model coordinates obtained by defining Z = 0.

The homography between the calibration target model and image coordinates (H)

is defined up to scale, so defining λ as an arbitrary scaling factor, we have:

H =
[

h1 h2 h3

]

= λA
[

r1 r2 t
]

(B.8)

Computation of the homographyH for each image to be included in the calibration

is obtained using standard techniques, such as those described by [60]. The calcu-

lation begins with a normalized linear least squares estimate, followed by non-linear

170

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

optimization.

By definition, the columns of a rotation matrix are orthonormal. Using the or-

thogonality we have:

[

h1 h2 h3

]

= λA
[

r1 r2 t
]

(B.9)

1

λ
A−1

[

h1 h2 h3

]

=
[

r1 r2 t
]

(B.10)

r1 · r2 = 0 ⇒ rT1 r2 = 0 (B.11)

(
1

λ
A−1h1)

T (
1

λ
A−1h2) = 0 (B.12)

hT
1

1

λ
A−T (

1

λ
A−1h2) = 0 (B.13)

hT
1A

−TA−1h2 = 0 (B.14)

Similarly, using the unit norm of the rotation matrix columns, we obtain

[

h1 h2 h3

]

= λA
[

r1 r2 t
]

(B.15)

1

λ
A−1

[

h1 h2 h3

]

=
[

r1 r2 t
]

(B.16)

rn · rn = 1 ⇒ rTnrn = 1 (B.17)

(
1

λ
A−1h1)

T (
1

λ
A−1h1) = 1 and (

1

λ
A−1h2)

T (
1

λ
A−1h2) = 1 (B.18)

hT
1A

−TA−1h1 =
1

λ2
and hT

2A
−TA−1h2 =

1

λ2
(B.19)

hT
1A

−TA−1h1 = hT
2A

−TA−1h2 (B.20)

Resulting are the two constraints that Zhang’s calibration approach leverages.

These constraints are repeated for convenience as Equations (B.21) and (B.22).

hT
1A

−TA−1h2 = 0 (B.21)

hT
1A

−TA−1h1 = hT
2A

−TA−1h2 (B.22)

171

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

B.2 Analytic Initialization of Solution

The term A−TA−1 appears in constraints (B.21) and (B.22), so we define this term

as B = A−TA−1. The first goal of this section is to explicitly write the matrix B in

terms of the original expression for A (B.2). We start by deriving an expression for

A−1. This can be accomplished in many ways including inspection, but here we use

Gauss-Jordan elimination on an identity augmented copy of the matrix A.

[

A I
]

=

α γ u0 1 0 0

0 β v0 0 1 0

0 0 1 0 0 1

(B.23)

=

1 γ

α
u0

α
1
α

0 0

0 β v0 0 1 0

0 0 1 0 0 1

(B.24)

=

1 γ

α
u0

α
1
α

0 0

0 1 v0
β

0 1
β

0

0 0 1 0 0 1

(B.25)

=

1 0 u0

α
− γv0

αβ
1
α

− γ

αβ
0

0 1 v0
β

0 1
β

0

0 0 1 0 0 1

(B.26)

=

1 0 0 1
α

− γ

αβ

γv0
αβ

− u0

α

0 1 0 0 1
β

−v0
β

0 0 1 0 0 1

(B.27)

A−1 =

1
α

− γ

αβ

γv0
αβ

− u0

α

0 1
β

−v0
β

0 0 1

(B.28)

We thus have

172

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

B = A−TA−1 (B.29)

=

1
α

0 0

− γ

αβ
1
β

0
γv0
αβ

− u0

α
−v0

β
1

1
α

− γ

αβ

γv0
αβ

− u0

α

0 1
β

−v0
β

0 0 1

(B.30)

=

1
α2 − γ

α2β

γv0−u0β

α2β

− γ

α2β

γ2

α2β2 +
1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

γv0−u0β

α2β
−γ(v0γ−u0β)

α2β2 − v0
β2

(v0γ−u0β)2

α2β2 +
v2
0

β2 + 1

(B.31)

B11 B12 B13

B21 B22 B23

B31 B32 B33

=

1
α2 − γ

α2β

γv0−u0β

α2β

− γ

α2β

γ2

α2β2 +
1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

γv0−u0β

α2β
−γ(v0γ−u0β)

α2β2 − v0
β2

(v0γ−u0β)2

α2β2 +
v2
0

β2 + 1

(B.32)

The matrix B is symmetric, and is therefore represented by Zhang as the vector

b with six degrees of freedom

b =
[

B11 B12 B22 B13 B23 B33

]T

(B.33)

A least-squares estimate of B can be obtained from the model plane to image

homographies, using the constraints defined in Equations (B.21) and (B.22). Both

constraints contain terms of the form hT
i Bhj , so with the k-th column vector of H

defined as hk =
[

hk1 hk2 hk3

]T

, the constraints may be rewritten in a form that

uses the vectorized b as:

173

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

hT
i Bhj (B.34)

=
[

hi1 hi2 hi3

]

B11 B12 B13

B12 B22 B23

B13 B23 B33

hj1

hj2

hj3

(B.35)

= B11(hi1hj1) + B12(hi1hj2 + hi2hj1)+

B22(hi2hj2) + B13(hi1hj3 + hi3hj1)+

B23(hi2hj3 + hi3hj2) + B33(hi3hj3) (B.36)

=

hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi1hj3 + hi3hj1

hi2hj3 + hi3hj2

hi3hj3

T

B11

B12

B22

B13

B23

B33

(B.37)

The left hand vector in Equation B.37 is labelled as vij, and is then used to

establish a homogeneous system for least squares estimation as:

[

vT
12

vT
11 − vT

22

]

b = 0 (B.38)

Each homography to be used in the least squares estimation contributes an ad-

ditional two rows to the system, in the same form as Equation B.38. Standard least

squares techniques (such as the SVD) can be used to estimate the vector b, and

equivalently the matrix B.

To solve for the individual camera parameters, the elements of B can be combined

and then simplified. Zhang provides the final equations in Appendix B of [185], but

they are recorded and simplified here to show extraction of the relevant parameters.

It is important to note that the matrix B is defined up to a scaling factor λ, which

must be retrieved in addition to the camera parameters.

Following the same sequence of parameter extraction and using the combinations

174

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

proposed by Zhang:

v0:

B12B13 −B11B23

B11B22 −B2
12

(B.39)

=
(−λγ

α2β
)(λγv0−λu0β

α2β
)− (λ

α2)(
−λγ(v0γ−u0β)

α2β2 − λv0
β2)

(λ
α2)(

λγ2

α2β2 +
λ
β2)− (λγ

α2β
)2

(B.40)

=
(−λ2v0
(α2β)2

) + (λ
2γu0β

(α2β)2
) + (λ

2γ(v0γ−u0β)
α4β2) + (λ2v0

α2β2)

(λ
2γ2

α4β2) + (λ2

α2β2)− (λ
2γ2

α4β2)
(B.41)

=
−γv0
α2β

+
γu0β

α2β
+

γ(v0γ − u0β)

α2β
+ v0 (B.42)

=v0 (B.43)

λ:

B33 −
B2

13 + v0(B12B13 − B11B23)

B11

(B.44)

=
λ(v0γ − u0β)

2

α2β2
+

λv20
β2

+ λ−

(λ(v0γ−u0β)
α2β

)2 + v0((
−λγ

α2β
)(λ(v0γ−u0β)

α2β
)− (λ

α2)(
−λγ(v0γ−u0β)

α2β2 − λv0
β2))

λ
α2

(B.45)

=
λ(v0γ − u0β)

2

α2β2
+

λv20
β2

+ λ−
λ2(v0γ − u0β)

2

α4β2

α2

λ
+

λ2v0γ(v0γ − u0β)

α4β2

α2

λ
−

λ2v0γ(v0γ − u0β)

α4β2

α2

λ
−

λ2v20
α2β2

α2

λ
(B.46)

=
λ(v0γ − u0β)

2

α2β2
+

λv20
β2

+ λ−
λ(v0γ − u0β)

2

α2β2
+

λv0γ(v0γ − u0β)

α2β2
−

λv0γ(v0γ − u0β)

α2β2
−

λv20
β2

(B.47)

=λ (B.48)

175

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

α:

B11 =
λ

α2
(B.49)

α =

√

λ

B11

(B.50)

β:

√

λB11

B11B22 −B2
12

(B.51)

=

√

√

√

√

λ λ
α2

λ
α2 (

λγ2

α2β2 +
λ
β2)− (−λγ

α2β
)2

(B.52)

=

√

√

√

√

λ2

α2

λ2γ2

α4β2 +
λ2

α2β2 −
λ2γ2

α4β2

=

√

√

√

√

λ2

α2

λ2

α2β2

(B.53)

=
√

β2 = β (B.54)

γ:

−B12α
2β

λ
(B.55)

=

λγ

α2β
α2β

λ
=

λγ

λ
= γ (B.56)

u0:

γv0
β

−
B13α

2

λ
(B.57)

=
γv0
β

−
λ(γv0 − u0β)

α2β

α2

λ
(B.58)

=
γv0
β

−
γv0
β

+
u0β

β
= u0 (B.59)

176

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Once the camera parameters, and thus the camera matrix A have been recovered,

the camera extrinsic parameters can be determined using the following equations:

r1 = λA−1h1 (B.60)

r2 = λA−1h2 (B.61)

r3 = r1 × r2 (B.62)

t = λA−1h3 (B.63)

The estimated columns ri do not necessarily exhibit the properties of a rotation

matrix, so a valid rotation matrix close to the recovered parameters should be esti-

mated [185].

B.3 Homography-based Filtering

For the work described in this thesis, residual error from model to image homogra-

phy calculation is used to filter image frames that have obtained poor grid feature

localization. Such a condition occurs when the complete image is blurred close to the

limit of the scale-space scale level threshold. In that case, blur may reduce localiza-

tion information uniformly across the image, which can be detected through larger

than normal residuals in the homography refinement optimization. Such frames are

rejected from the calibration data set.

B.4 Non-linear Optimization

Following camera parameter initialization from the least squares solution of the vector

b, a non-linear optimization is required to refine the parameters and to recover lens

distortion estimates. The least squares solution minimizes algebraic error, which has

no geometric meaning in the context of projective imaging. Instead, a geometrically

meaningful quantity such as image plane reprojection error should be minimized.

Such techniques are described, for example, by Hartley [60].

The non-linear optimization should refine the camera intrinsic, extrinsic, and dis-

tortion parameter estimates. In some formulations, the minimization can further

177

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

adjust the estimated 3D coordinates of the model plane image points (bundle adjust-

ment), and also scaling and aspect ratio estimates of the gridded target [152].

Radial distortion, modelled using two distortion coefficients, can be approximated

as a Taylor polynomial:

[

ud

vd

]

=

[

uu

vu

]

+ [k1((uu − uc)
2 + (vu − vc)

2) + k2((uu − uc)
2 + (vu − vc)

2)2]

[

uu − uc

vu − vc

]

(B.64)

=

[

uu

vu

]

+ [k1((uu − (uc + ru))
2 + (vu − (vc + rv))

2)+ (B.65)

k2((uu − (uc + ru))
2 + (vu − (vc + rv))

2)2]

[

uu − (uc + ru)

vu − (vc + rv)

]

(B.66)

where k1 and k2 are the radial distortion coefficients, uu and vu are the undistorted

image coordinates, ud and vd are the distorted image coordinates, and uc and vc

are image coordinates of the centre of radial distortion. Distortion according to

Equation B.66 can be used within the optimization objective function to refine the

distortion coefficients k1 and k2 and distortion centre estimates.

Levenberg-Marquardt (LM) optimization is often selected for non-linear refine-

ment in camera calibration and bundle adjustment [165, 60]. In the context of cali-

bration or bundle adjustment, a sparse LM implementation should typically be chosen

because of significant computational speedup. The optimization variable vector con-

tains the independent extrinsic parameters of the camera at multiple viewpoints used

for the calibration. Changes to the extrinsic parameter estimate for one view position

does not affect the reconstruction error in other independent camera viewpoints, so

the optimization normal equations have a sparse structure. Sparse LM optimization

exhibits significant acceleration in terms of computation load, compared with naive

(dense) application of the algorithm. Further details on sparse LM optimization, in

the context of bundle adjustment, are available in [97, 60].

178

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Table B.1: Calibration parameter scaling parameters
Parameter Units Approximate value

from testing
Scaling Factor

α Scaling factor 2.8538e+03 1E4
β Scaling factor 2.8558e+03 1E4
u0 Pixels 512.2039 1E3
v0 Pixels 384.1091 1E3
k1 First order multiplier -6.6750e-06 1E10
k2 Second order multiplier -1.2285e-08 1E12
rI Pixels -5.9379 1E3
rJ Pixels -7.7186 1E3
ν Ratio 1.0043 1E6

Rotation uθ 0.1-10 1E4
Translation Calibration grid units 1-100 1E3

B.5 Calibration Parameter Scaling

In the Zhang-based optimization proposed by Strobl and Hirzinger [152], termination

of the LM optimization occurs when the iterative parameter changes become less than

a set magnitude between iterations. The optimization variables are recorded in differ-

ing units with varying final value magnitudes, and requiring a variety of tolerances.

Scaling is used to adjust the parameter magnitudes before input to optimization, and

inverse scaling is used within the objective function before applying the variables in

computation. The LM objective function termination criterion can be set within one

or two orders of the magnitude of machine precision to cause optimization to termi-

nate on parameter tolerance, rather than on objective value changes which have little

meaning. Table B.1 shows a set of scaling factors based on the magnitude of typical

values from calibration of the camera used in this work.

179

References

[1] Abdel-Aziz, Y. and Karara, H. (1971). Direct linear transformation from com-

parator coordinates into object space coordinates in close-range photogrammetry.

In Proceedings of the Symposium on Close-Range Photogrammetry, pages 1–18,

Falls Church, VA. American Society of Photogrammetry.

[2] Aguilar, J. J., Torres, F., and Lope, M. A. (1996). Stereo vision for 3d measure-

ment: accuracy analysis, calibration and industrial applications. Measurement,

18(4), 193 – 200.

[3] Ahn, S. J., Rauh, W., and Warnecke, H.-J. (2001). Least-squares orthogonal

distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recog-

nition, 34(12), 2283 – 2303.

[4] Albarelli, A., Rodolà, E., and Torsello, A. (2010). Robust camera calibration

using inaccurate targets. In Proceedings of the British Machine Vision Conference,

pages 16.1–16.10. BMVA Press.

[5] Babaud, J., Witkin, A. P., Baudin, M., and Duda, R. O. (1986). Uniqueness

of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach.

Intell., 8(1), 26–33.

[6] Badekas, E. and Papamarkos, N. (2005). Automatic evaluation of document bina-

rization results. In A. Sanfeliu and M. Corts, editors, Progress in Pattern Recogni-

tion, Image Analysis and Applications, volume 3773 of Lecture Notes in Computer

Science, pages 1005–1014. Springer Berlin / Heidelberg.

180

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[7] Batista, J., Araujo, H., and De Almeida, A. (1998). Iterative multi-step explicit

camera calibration. In Computer Vision, 1998. Sixth International Conference on,

pages 709 –714.

[8] Beardsley, P. and Murray, D. (1992). Camera calibration using vanishing points.

In BMVC92.

[9] Bougnoux, S. (1998). From projective to Euclidean space under any practical situ-

ation, a criticism of self-calibration. In Computer Vision, 1998. Sixth International

Conference on, pages 790 –796.

[10] Bretzner, L. and Lindeberg, T. (1996). Feature tracking with automatic selection

of spatial scales. Computer Vision and Image Understanding, 71, 385–392.

[11] Brown, D. C. (1971). Close-range camera calibration. PHOTOGRAMMETRIC

ENGINEERING, 37(8), 855–866.

[12] Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Advances in computational

stereo. IEEE Trans. Pattern Anal. Mach. Intell., 25, 993–1008.

[13] Bruzzone, E. and Mangili, F. (1991). Calibration of a ccd camera on a hybrid co-

ordinate measuring machine for industrial metrology. Industrial Vision Metrology,

1526(1), 96–112.

[14] Canny, J. (1986). A computational approach to edge detection. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, PAMI-8(6), 679 –698.

[15] Carter, J., Tucker, T., and Kurfess, T. (2008). 3-axis CNC path planning using

depth buffer and fragment shader. Computer Aided Design and Applications, 5(1-

4), TBD.

[16] Chan, H.-L. (2005). Laser Digitizer-Based Sheet Metal Strain and Surface Anal-

ysis. Ph.D. thesis, McMaster University.

[17] Chan, H.-L., Spence, A., and Sklad, M. (2005). Parallel computing for sheet

metal strain analysis. In High Performance Computing Systems and Applications,

2005. HPCS 2005. 19th International Symposium on, pages 260 – 266.

181

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[18] Chan, H.-L., Spence, A., and Sklad, M. (2007). Laser digitizer-based sheet

metal strain and surface analysis. International Journal of Machine Tools and

Manufacture, 47(1), 191 – 203.

[19] Chen, D. and Zhang, G. (2005). A new sub-pixel detector for x-corners in camera

calibration targets. In WSCG (Short Papers), pages 97–100.

[20] Chinveeraphan, S., Takamatsu, R., and Sato, M. (1995). Understanding of ridge-

valley lines on image-intensity surfaces in scale-space. In V. Hlavc and R. ra,

editors, Computer Analysis of Images and Patterns, volume 970 of Lecture Notes

in Computer Science, pages 661–667. Springer Berlin / Heidelberg.

[21] Colic, A., Kalva, H., and Furht, B. (2010). Exploring nvidia-cuda for video

coding. In Proceedings of the first annual ACM SIGMM conference on Multimedia

systems, MMSys ’10, pages 13–22, New York, NY, USA. ACM.

[22] Cope, B., Cheung, P. Y., Luk, W., and Howes, L. (2010). Performance compari-

son of graphics processors to reconfigurable logic: A case study. IEEE Transactions

on Computers, 59, 433–448.

[23] Coutinho, B., Teodoro, G., Oliveira, R., Neto, D., and Ferreira, R. (2009). Pro-

filing general purpose gpu applications. In Computer Architecture and High Perfor-

mance Computing, 2009. SBAC-PAD ’09. 21st International Symposium on, pages

11 –18.

[24] Daniilidis, K. (1999). Hand-eye calibration using dual quaternions. International

Journal of Robotic Research, 18, 286–298.

[25] Davies, E. R. (2004). Machine Vision: Theory, Algorithms, Practicalities. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA.

[26] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000). Com-

putational Geometry: Algorithms and Applications. Springer-Verlag, second edi-

tion.

[27] de la Escalera, A. and Armingol, J. M. (2010). Automatic chessboard detection

for intrinsic and extrinsic camera parameter calibration. Sensors, 10(3), 2027–2044.

182

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[28] Deriche, R. and Giraudon, G. (1991). On corner and vertex detection. In

CVPR91, pages 650–655.

[29] Deriche, R. and Giraudon, G. (1992). A computational approach for corner and

vertex detection. International Journal of Computer Vision, 10, 101–124.

[30] Devernay, F., Devernay, F., Robotique, P., and Robotvis, P. (1995). A non-

maxima suppression method for edge detection with sub-pixel accuracy. Technical

report, INRIA Research Rep. 2724, SophiaAntipolis.

[31] di Baja, G. and Nystrom, I. (2004). 2d grey-level skeleton computation: a

discrete 3d approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the

17th International Conference on, volume 2, pages 455 – 458 Vol.2.

[32] Dornaika, F. and Horaud, R. (1998). Simultaneous robot-world and hand-eye

calibration. Robotics and Automation, IEEE Transactions on, 14(4), 617 –622.

[33] Douskos, V., Kalisperakis, I., and Karras, G. (2007). Automatic calibration of

digital cameras using planar chess-board patterns. In Optical 3-D Measurement

Techniques VIII, volume 1, pages 132–140. Wichman Verlag.

[34] Douxchamps, D. and Chihara, K. (2009). High-accuracy and robust localization

of large control markers for geometric camera calibration. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 31(2), 376 –383.

[35] Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect

lines and curves in pictures. Commun. ACM, 15, 11–15.

[36] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification (2nd

Edition). Wiley-Interscience, 2 edition.

[37] Eberly, D., Gardner, R., Morse, B., Pizer, S., and Scharlach, C. (1994). Ridges

for image analysis. Journal of Mathematical Imaging and Vision, 4(4), 353–373.

[38] Faugeras, O. and Toscani, G. (1986). The calibration problem for stereo. In

CVPR86, pages 15–20.

183

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[39] Faugeras, O., Luong, Q.-T., and Papadopoulou, T. (2001). The Geometry of

Multiple Images: The Laws That Govern The Formation of Images of A Scene and

Some of Their Applications. MIT Press, Cambridge, MA, USA.

[40] Fiala, M. and Shu, C. (2005). Fully automatic camera calibration using self-

identifying calibration targets. Technical Report NRC/ERB-1130, NRC 48306,

National Research Council of Canada.

[41] Fleck, M. (1992). Some defects in finite-difference edge finders. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 14, 337–345.

[42] Florack, L. (2000). A spatio-frequency trade-off scale for scale-space filtering.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 1050–

1055.

[43] Florack, L. and Kuijper, A. (2000). The topological structure of scale-space

images. Journal of Mathematical Imaging and Vision, 12, 65–79.

[44] Florack, L., Romeny, H., Koenderink, J., and Viergever, M. (1994). General in-

tensity transformations and differential invariants. Journal of Mathematics Imaging

and Vision, 4, 171–187.

[45] Florack, L. M., ter Haar Romeny, B. M., Koenderink, J. J., and Viergever, M. A.

(1992). Scale and the differential structure of images. Image and Vision Computing,

10(6), 376 – 388. Information Processing in Medical Imaging.

[46] Forbes, K., Voigt, A., and Bodika, N. (2002). An inexpensive, automatic and

accurate camera calibration method. In In Proceedings of the Thirteenth Annual

South African Workshop on Pattern Recognition. PRASA.

[47] Fung, J. and Mann, S. (2004). Computer vision signal processing on graphics

processing units. In Acoustics, Speech, and Signal Processing, 2004. Proceedings.

(ICASSP ’04). IEEE International Conference on, volume 5, pages V – 93–6 vol.5.

[48] Fung, J. and Mann, S. (2008). Using graphics devices in reverse: Gpu-based

image processing and computer vision. In International Conference on Multimedia

184

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

Computing and Systems/International Conference on Multimedia and Expo, pages

9–12.

[49] Galanulis, K. (2005). Optical measuring technologies in sheet metal processing.

Advanced Materials Research, 6-8, 19–34.

[50] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., and

Rossi, F. (2004). GSL-GNU Scientific Library: Reference manual. Network Theory

Ltd., third edition.

[51] Gherardi, R. and Fusiello, A. (2010). Practical autocalibration. In Proceedings

of the 11th European conference on Computer vision: Part I, ECCV’10, pages

790–801, Berlin, Heidelberg. Springer-Verlag.

[52] Goldstein, M. S., Mitchell, J. P., Fleisig, R. V., and Spence, A. D. (July 18-20,

2005). Design of a close-up stereo vision based sheet metal inspection system. In 2nd

CDEN International Conference on Design Education, Innovation, and Practice,

Kananaskis, AB.

[53] Gonzlez, J. I., Gmez, J. C., Artal, C. G., and Cabrera, A. M. N. (2005). Stability

study of camera calibration methods. In CI Workshop en Agentes F fisicos Spain

WAF.

[54] Gorthi, S. S. and Rastogi, P. (2010). Fringe projection techniques: Whither we

are? OPTICS AND LASERS IN ENGINEERING, 48(2), 133–140.

[55] Guo, F., Yang, Y., Chen, B., and Guo, L. (2010). A novel multi-scale edge

detection technique based on wavelet analysis with application in multiphase flows.

Powder Technology, 202(1-3), 171 – 177.

[56] Hall, E., Tio, J., McPherson, C., and Sadjadi, F. (1982). Measuring curved

surfaces for robot vision. Computer, 15(12), 42 – 54.

[57] Hanson, A. J. (2006). Visualizing quaternions. Morgan Kaufmann.

[58] Haralick, R. M. (1983). Ridges and valleys on digital images. Computer Vision,

Graphics, and Image Processing, 22(1), 28 – 38.

185

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[59] Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In

Proceedings of the 4th Alvey Vision Conference, pages 147–152.

[60] Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in Computer

Vision. Cambridge University Press, Cambridge, UK.

[61] Hartley, R. I. (1994). Projective reconstruction and invariants from multiple

images. IEEE Trans. Pattern Anal. Mach. Intell., 16, 1036–1041.

[62] Heikkila, J. and Silven, O. (1997). A four-step camera calibration procedure

with implicit image correction. In Computer Vision and Pattern Recognition, 1997.

Proceedings., 1997 IEEE Computer Society Conference on, pages 1106 –1112.

[63] Hennessy, J. L. and Patterson, D. A. (2006). Computer Architecture, Fourth

Edition: A Quantitative Approach. Morgan Kaufmann.

[64] Hoffmann, H. and Vogl, C. (2003). Determination of true stress-strain-curves and

normal anisotropy in tensile tests with optical strain measurement. CIRP Annals

- Manufacturing Technology, 52(1), 217 – 220.

[65] Hopf, M. and Ertl, T. (1999). Hardware based wavelet transformations. In

Vision, Modeling, and Visualization ’99, pages 317–328.

[66] Horaud, R. and Dornaika, F. (1995). Hand-eye calibration. Int. J. Rob. Res.,

14, 195–210.

[67] Horn, B. K. P. (2000). Tsai’s camera calibration method revisited. Technical

report, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology.

[68] Hwu, W.-M., Rodrigues, C., Ryoo, S., and Stratton, J. (2009). Compute uni-

fied device architecture application suitability. Computing in Science Engineering,

11(3), 16 –26.

[69] Inc., F. T. (2010). FARO PowerGage Technical Sheet.

186

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[70] Johansson, G. and Carr, H. (2006). Accelerating marching cubes with graphics

hardware. In Proceedings of the 2006 conference of the Center for Advanced Studies

on Collaborative research, CASCON ’06, New York, NY, USA. ACM.

[71] Kinsner, M., Capson, D., and Spencer, A. (2007). Scale-space feature detection

for close range camera calibration. In Electrical and Computer Engineering, 2007.

CCECE 2007. Canadian Conference on, pages 1464 –1467.

[72] Kinsner, M., Capson, D., and Spence, A. (2008). Scale-space ridge detection

with gpu acceleration. In Electrical and Computer Engineering, 2008. CCECE

2008. Canadian Conference on, pages 001527 –001530.

[73] Kinsner, M., Spence, A., and Capson, D. (2010a). GPU Accelerated Sheet Form-

ing Grid Measurement. Computer Aided Design and Applications, 7(5), 675–684.

[74] Kinsner, M., Capson, D., and Spence, A. (2010b). A modular cuda-based frame-

work for scale-space feature detection in video streams. Journal of Physics: Con-

ference Series, 256(1), 012005.

[75] Kirk, D. B. and Hwu, W.-m. W. (2010). Programming Massively Parallel Pro-

cessors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

[76] Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50(5),

363–370.

[77] Kovacs, P. and Tisza, M. (2008). A complex measuring and evaluation system for

determination of forming limit diagrams. Materials Science Forum, 589, 233–238.

[78] Kruger, L. and Wohler, C. (2011). Accurate chequerboard corner localisa-

tion for camera calibration. Pattern Recognition Letters, In Press, Accepted

Manuscript.

[79] Kuchnio, P. and Capson, D. (2009). A parallel mapping of optical flow to com-

pute unified device architecture for motion-based image segmentation. In Image

Processing (ICIP), 2009 16th IEEE International Conference on, pages 2325 –2328.

187

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[80] Kuijper, A. and Florack, L. (1999). Calculations on critical points under gaussian

blurring. In Scale-Space Theories in Computer Vision, pages 318–329.

[81] Kuipers, J. B. (1999). Quaternions and Rotation Sequences. Princeton University

Press, Princeton.

[82] Kurfess, T., T. Tucker, K. A., and Meghashyam, P. M. (2007). GPU for CAD.

Computer Aided Design and Applications, 4(6), 853–862.

[83] Lam, L., Lee, S.-W., and Suen, C. (1992). Thinning methodologies-a compre-

hensive survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

14(9), 869 –885.

[84] Lavest, J.-M., Viala, M., and Michel, D. (1998). Do we really need an accurate

calibration pattern to achieve a reliable camera calibration? In Proceedings of the

5th European Conference on Computer Vision-Volume I - Volume I, ECCV ’98,

pages 158–174, London, UK. Springer-Verlag.

[85] Lee, D., Dinov, I., Dong, B., Gutman, B., Yanovsky, I., and Toga, A. W. (2010a).

Cuda optimization strategies for compute- and memory-bound neuroimaging algo-

rithms. Computer Methods and Programs in Biomedicine, In Press, Corrected

Proof.

[86] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish,

N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., and Dubey,

P. (2010b). Debunking the 100x gpu vs. cpu myth: an evaluation of throughput

computing on cpu and gpu. SIGARCH Comput. Archit. News, 38(3), 451–460.

[87] Lengyel, J., Reichert, M., Donald, B. R., and Greenberg, D. P. (1990). Real-time

robot motion planning using rasterizing computer graphics hardware. In In Proc.

SIGGRAPH, pages 327–335.

[88] Lim, J.-Y. and Stiehl, H. (2003). A generalized discrete scale-space formulation

for 2-d and 3-d signals. In Scale Space Methods in Computer Vision, pages 132–147.

Springer Berlin / Heidelberg.

188

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[89] Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Transactions of

Pattern Analysis and Machine Intelligence, 12(3), 234–254.

[90] Lindeberg, T. (1993). Discrete derivative approximations with scale-space prop-

erties: A basis for low-level feature extraction. Journal of Mathematical Imaging

and Vision, 3(4), 349–376.

[91] Lindeberg, T. (1994a). Junction detection with automatic selection of detection

scales and localization scales. In In Proc. 1st International Conference on Image

Processing, volume I, pages 924–928. IEEE Computer Society Press.

[92] Lindeberg, T. (1994b). Scale-space Theory in Computer Vision. Kluwer Aca-

demic Publishers, Dordrecht, The Netherlands.

[93] Lindeberg, T. (1996). Edge detection and ridge detection with automatic scale

selection. In Proceedings of Computer Vision and Pattern Recognition, pages 465–

470.

[94] Lindeberg, T. (1998). Feature detection with automatic scale selection. Interna-

tional Journal of Computer Vision, 30, 79–116.

[95] Lindeberg, T. (1999). Principles for automatic scale selection. In HCVA99, pages

II: 239–274.

[96] Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution

3d surface construction algorithm. In Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, SIGGRAPH ’87, pages 163–169,

New York, NY, USA. ACM.

[97] Lourakis, M. A. and Argyros, A. (2009a). SBA: A Software Package for Generic

Sparse Bundle Adjustment. ACM Trans. Math. Software, 36(1), 1–30.

[98] Lourakis, M. I. A. and Argyros, A. A. (2009b). Sba: A software package for

generic sparse bundle adjustment. ACM Trans. Math. Softw., 36, 2:1–2:30.

[99] Lucchese, L. and Mitra, S. (2002). Using saddle points for subpixel feature

detection in camera calibration targets. In Circuits and Systems, 2002. APCCAS

’02. 2002 Asia-Pacific Conference on, volume 2, pages 191 – 195 vol.2.

189

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[100] Luhmann, T., Robson, S., Kyle, S., and Harley, I. (2007). Close Range Pho-

togrammetry: Principles, Techniques and Applications. Wiley.

[101] Luo, Y. and Duraiswami, R. (2008). Canny edge detection on nvidia cuda. In

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE

Computer Society Conference on, pages 1 –8.

[102] MacLean, W. J. and Tsotsos, J. K. (2008). Fast pattern recognition using

normalized grey-scale correlation in a pyramid image representation. Mach. Vision

Appl., 19, 163–179.

[103] Mallat, S. (2008). A Wavelet Tour of Signal Processing, Third Edition: The

Sparse Way. Academic Press, 3rd edition.

[104] Mallon, J. and Whelan, P. F. (2007). Which pattern? biasing aspects of planar

calibration patterns and detection methods. Pattern Recogn. Lett., 28, 921–930.

[105] Marr, D. and Hildreth, E. (1980). Theory of edge detection. Proceedings of the

Royal Society of London Series B, 207, 187–217.

[106] Mitchell, J. (2005). Close-Up Stereo Triangulation with Application to Sheet

Metal Strain Analysis. Master’s thesis, McMaster University.

[107] Mokhtarian, F. and Suomela, R. (1998). Robust image corner detection through

curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell., 20, 1376–1381.

[108] Moravec, H. P. (1980). Obstacle avoidance and navigation in the real world

by a seeing robot rover. Ph.D. thesis, Stanford University, Stanford, CA, USA.

AAI8024717.

[109] Newman, T. S. and Yi, H. (2006). A survey of the marching cubes algorithm.

Computers & Graphics, 30(5), 854 – 879.

[110] NVIDIA (2009a). NVIDIA CUDA C Programming Best Practices Guide. http:

//developer.nvidia.com/object/gpucomputing.html.

190

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[111] NVIDIA (2009b). NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf.

[112] NVIDIA (2010a). NVIDIA CUDA C Programming Guide. http://developer.

nvidia.com/object/gpucomputing.html.

[113] NVIDIA (2010b). NVIDIA GF100 White paper. http://www.nvidia.com/

object/IO_89569.html.

[114] NVIDIA (2010c). PTX: Parallel Thread Execution ISA Version

2.1. http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/

docs/ptx_isa_2.1.pdf.

[115] NVIDIA (2010d). Tuning CUDA Applications for Fermi. http://developer.

nvidia.com/object/gpucomputing.html.

[116] O’Rourke, J. (1998). Computational Geometry in C. Cambridge University

Press. Hardback ISBN: 0521640105; Paperback: ISBN 0521649765.

[117] Otsu, N. (1979). A threshold selection method from gray-level histograms.

Systems, Man and Cybernetics, IEEE Transactions on, 9(1), 62 –66.

[118] Owens, John, D., Luebke, David, Govindaraju, Naga, Harris, Mark, Kruger,

Jens, Lefohn, Aaron, E., Purcell, and Timothy, J. (2007). A Survey of General-

Purpose Computation on Graphics Hardware. Computer Graphics Forum, 26(1),

80–113.

[119] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., and Phillips, J.

(2008). Gpu computing. Proceedings of the IEEE, 96(5), 879 –899.

[120] Parida, L., Geiger, D., and Hummel, R. (1998). Junctions: detection, clas-

sification, and reconstruction. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 20(7), 687 –698.

[121] Park, S. I., Ponce, S., Huang, J., Cao, Y., and Quek, F. (2008). Low-cost,

high-speed computer vision using nvidia’s cuda architecture. In Applied Imagery

Pattern Recognition Workshop, 2008. AIPR ’08. 37th IEEE, pages 1 –7.

191

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[122] Pauwels, K. and Van Hulle, M. (2008). Realtime phase-based optical flow on

the gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW

’08. IEEE Computer Society Conference on, pages 1 –8.

[123] Peitgen, H.-O., Jürgens, H., and Saupe, D. (2004). Chaos and fractals - new

frontiers of science. Springer, 2nd edition.

[124] Peng, T. and Gupta, S. K. (2007). Model and algorithms for point cloud con-

struction using digital projection patterns. Journal of Computing and Information

Science in Engineering, 7(4), 372–381.

[125] Perwass, C. (2005). Junction and corner detection through the extraction and

analysis of line segments. In R. Klette and J. unic, editors, Combinatorial Im-

age Analysis, volume 3322 of Lecture Notes in Computer Science, pages 568–582.

Springer Berlin / Heidelberg.

[126] ping Wang, Y. and Lee, S. L. (1998). Scale-space derived from b-splines. IEEE

Trans. Pattern Anal. Machine Intell, 20, 1040–1055.

[127] Pirjan, A. (2010). Improving software performance in the compute unified

device architecture. Informatica Economica, 14(4), 30 – 47.

[128] Pock, T., Unger, M., Cremers, D., and Bischof, H. (2008). Fast and exact

solution of total variation models on the gpu. In Computer Vision and Pattern

Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference

on, pages 1 –8.

[129] POV-Ray (2011). Persistance of Vision Raytracer.

[130] Ray, N. and Saha, B. (2007). Edge sensitive variational image thresholding. In

Image Processing, 2007. ICIP 2007. IEEE International Conference on, volume 6.

[131] Remaki, L. and Cheriet, M. (2000). Kcs-new kernel family with compact sup-

port in scale space: formulation and impact. IEEE Transactions on Image Pro-

cessing, 9, 970–981.

[132] Research, P. G. (2004). Dragonfly: Technical reference manual. Technical

report, Point Grey Research.

192

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[133] Ricolfe-Viala, C. and Sanchez-Salmeron, A.-J. (2007). Improved camera cali-

bration method based on a two-dimensional template. In Proceedings of the 3rd

Iberian conference on Pattern Recognition and Image Analysis, Part II, IbPRIA

’07, pages 420–427, Berlin, Heidelberg. Springer-Verlag.

[134] Romeny, B. M. (1996). Introduction to Scale-Space Theory: Multiscale Geo-

metric Image Analysis. Technical report, Utrecht University.

[135] Salvi, J., Armangu, X., and Batlle, J. (2002). A comparative review of camera

calibrating methods with accuracy evaluation. Pattern Recognition, 35(7), 1617 –

1635.

[136] Sauvola, J. and Pietikinen, M. (2000). Adaptive document image binarization.

Pattern Recognition, 33(2), 225 – 236.

[137] Schneider, M., Friebe, H., and Galanulis, K. (2008). Validation and optimiza-

tion of numerical simulations by optical measurements of tools and parts. In Inter-

national Deep Drawing Research Group, IDDRG 2008 International Conference,

Olofstrom, Sweden.

[138] Sebok, T. J., Roemer, L. E., and Jr., G. S. M. (1981). An algorithm for line

intersection identification. Pattern Recognition, 13(2), 159 – 166.

[139] Serrat, J., Lopez, A., and Lloret, D. (2000). On ridges and valleys. Pattern

Recognition, International Conference on, 4, 4059.

[140] Sezgin, M. and Sankur, B. (2004). Survey over image thresholding techniques

and quantitative performance evaluation. Journal of Electronic Imaging, 13(1),

146–168.

[141] Shafait, F., Keysers, D., and Breuel, T. (2008). Efficient implementation of

local adaptive thresholding techniques using integral images. In Proceedings of

the 15th Document Recognition and Retrieval Conference (DRR-2008), Part of the

IS&TSPIE International Symposium on Electronic Imaging, January 26-31, San

Jose, CA, USA. SPIE.

193

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[142] Shen, T.-S. and Menq, C.-H. (2001). Automatic camera calibration for a

multiple-sensor integrated coordinate measurement system. Robotics and Automa-

tion, IEEE Transactions on, 17(4), 502 –507.

[143] Shu, C., Brunton, A., and Fiala, M. (2003). Automatic grid finding in calibra-

tion patterns using delaunay triangulation. Technical report, NRC Institute for

Information Technology. 46497.

[144] Shu, C., Brunton, A., and Fiala, M. (2010). A topological approach to finding

grids in calibration patterns. Machine Vision and Applications, 21, 949–957.

[145] Sklad, M. P. (2004). Aspects of automated measurement of proportional and

non-proportional deformation in sheet metal forming. Journal of Materials Pro-

cessing Technology, 145(3), 377 – 384.

[146] Sowerby, R., Duncan, J., and Chu, E. (1986). The modelling of sheet metal

stampings. Int. J. Mech. Sci., 28(7), 415–430.

[147] Spence, A. D., Capson, D. W., Sklad, M. P., Chan, H.-L., and Mitchell, J. P.

(2008). Simultaneous large scale sheet metal geometry and strain measurement.

Journal of Manufacturing Science and Engineering, 130(5).

[148] Steger, C. (1998). Evaluation of subpixel line and edge detection precision and

accuracy. In In International Archives of Photogrammetry and Remote Sensing,

pages 256–264.

[149] Steger, C. (2000). Subpixel-precise extraction of lines and edges. In Interna-

tional Archives of Photogrammetry and Remote Sensing, volume XXXIII, part B3,

pages 141–156.

[150] Steinmetz, C. (1990). Sub-micron position measurement and control on preci-

sion machine tools with laser interferometry. Precision Engineering, 12(1), 12 –

24.

[151] Strobl, K. H. and Hirzinger, G. (2006). Optimal Hand-Eye Calibration. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 4647–4653, Beijing, China.

194

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[152] Strobl, K. H. and Hirzinger, G. (2008). More Accurate Camera and Hand-Eye

Calibrations with Unknown Grid Pattern Dimensions. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1398–1405, Pasadena,

CA, USA.

[153] Sturm, P. and Maybank, S. (1999). On plane-based camera calibration: A

general algorithm, singularities, applications. In Computer Vision and Pattern

Recognition, 1999. IEEE Computer Society Conference on., volume 1, pages 2 vol.

(xxiii+637+663).

[154] Sturm, P., Ramalingam, S., Tardif, J.-P., Gasparini, S., and Barreto, J. (2011).

Camera models and fundamental concepts used in geometric computer vision. In

Foundations and Trends in Computer Graphics and Vision, volume 6, pages 1–183.

Now Publishers Inc., Hanover, MA, USA.

[155] Sun, W. and Cooperstock, R. (2006). An empirical evaluation of factors influ-

encing camera calibration accuracy using three publicly available techniques. Mach.

Vision Appl., 17, 51–67.

[156] Sutton, P. M., Hansen, C. D., wei Shen, H., and Schikore, D. (2000). A case

study of isosurface extraction algorithm performance. In Data Visualization 2000,

pages 259–268. Springer.

[157] Suzuki, K., Horiba, I., and Sugie, N. (2003). Linear-time connected-component

labeling based on sequential local operations. Computer Vision and Image Under-

standing, 89, 1–23.

[158] Swapna, P., Krouglicof, N., and Gosine, R. (2009). The question of accuracy

with geometric camera calibration. In Electrical and Computer Engineering, 2009.

CCECE ’09. Canadian Conference on, pages 541 –546.

[159] Snchez, J., Destefanis, E., and Canali, L. (2006). Plane-based camera calibra-

tion without direct optimization algorithms. In IV Jornadas Argentinas de Robtica,

Cordoba.

[160] Teixeira, L., Celes, W., and Gattass, M. (2008). Accelerated corner-detector

algorithms. In BMVC08.

195

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[161] Thirion, J.-P. and Gourdon, A. (1993). The Marching lines algorithm : new

results and proofs. Research Report RR-1881, INRIA.

[162] Thormahlen, T., Broszio, H., and Mikulastik, P. (2006). Robust linear auto-

calibration of a moving camera from image sequences. In ACCV06, pages II:71–80.

[163] Treibig, J., Hager, G., Hofmann, H. G., Hornegger, J., and Wellein, G. (2011).

Pushing the limits for medical image reconstruction on recent standard multicore

processors. CoRR, abs/1104.5243.

[164] Triggs, B. (1998). Autocalibration from planar scenes. In Proceedings of the 5th

European Conference on Computer Vision-Volume I - Volume I, ECCV ’98, pages

89–105, London, UK. Springer-Verlag.

[165] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle

adjustment a modern synthesis. In B. Triggs, A. Zisserman, and R. Szeliski,

editors, Vision Algorithms: Theory and Practice, volume 1883 of Lecture Notes in

Computer Science, pages 153–177. Springer Berlin / Heidelberg.

[166] Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3d

machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal

on Robotics and Automation, 3, 323–344.

[167] Tuzikov, A., Soille, P., Jeulin, D., Bruneel, H., and Vermeulen, M. (1992). Ex-

traction of grid patterns on stamped metal sheets using mathematical morphology.

In Pattern Recognition, 1992. Vol.I. Conference A: Computer Vision and Applica-

tions, Proceedings., 11th IAPR International Conference on, pages 425 –428.

[168] Vacher, P., Haddad, A., and Arrieux, R. (1999). Determination of the forming

limit diagrams using image analysis by the corelation method. CIRP Annals -

Manufacturing Technology, 48(1), 227 – 230.

[169] Viola, P. and Jones, M. (2004). Robust real-time face detection. International

Journal of Computer Vision, 57, 137–154.

196

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[170] Volkov, V. and Demmel, J. W. (2008). Benchmarking gpus to tune dense linear

algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC

’08, pages 31:1–31:11, Piscataway, NJ, USA. IEEE Press.

[171] Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., and Shringarpure,

A. (2010). On the limits of gpu acceleration. In Proceedings of the 2nd USENIX

conference on Hot topics in parallelism, HotPar’10, pages 13–13, Berkeley, CA,

USA. USENIX Association.

[172] Weitkamp, C., editor (2005). Lidar Range-Resolved Optical Remote Sensing of

the Atmosphere. Springer Series in Optical Sciences. Springer Berlin/Heidelberg.

[173] Weng, J., Cohen, P., and Herniou, M. (1992). Camera calibration with distor-

tion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell.,

14, 965–980.

[174] Willson, R. (1994). Modeling and Calibration of Automated Zoom Lenses. Ph.D.

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

[175] Willson, R. and Shafer, S. (1991). Active lens control for high precision com-

puter imaging. In Proc. IEEE International Conference on Robotics and Automa-

tion (ICRA ’91), volume 3, pages 2063 – 2070.

[176] Witkin, A. P. (1983). Scale-space filtering. In Proceedings of the 8th Interna-

tional Joint Conference on Artificial Interlligence, pages 1019–1022.

[177] Wong, H., Papadopoulou, M.-M., Sadooghi-Alvandi, M., and Moshovos, A.

(2010). Demystifying gpu microarchitecture through microbenchmarking. In Per-

formance Analysis of Systems Software (ISPASS), 2010 IEEE International Sym-

posium on, pages 235 –246.

[178] Xia, J., long Xiong, J., Xu, X., and Qin, H. (2010). A multiscale sub-pixel detec-

tor for corners in camera calibration targets. In Intelligent Computation Technology

and Automation (ICICTA), 2010 International Conference on, volume 1, pages 196

–199.

197

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

[179] Yang, Q. and Ma, S. D. (1997). Optical flow in the scale space. In Computer

Vision, ACCV’98, pages 607–614. Springer Berlin / Heidelberg.

[180] Yu, Q. and Medioni, G. (2008). A gpu-based implementation of motion de-

tection from a moving platform. In Computer Vision and Pattern Recognition

Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference on, pages 1

–6.

[181] Yuille, A. L. and Poggio, T. A. (1986). Scaling theorems for zero crossings.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-8(1),

15 –25.

[182] Zhang, S. (2005). High-Resolution, Real-Time 3-D Shape Measurement. Ph.D.

thesis, Stony Brook University.

[183] Zhang, X., Lei, M., Yang, D., Wang, Y., and Ma, L. (2007). Multi-scale cur-

vature product for robust image corner detection in curvature scale space. Pattern

Recognition Letters, 28(5), 545 – 554.

[184] Zhang, X.-F., Luo, A., Tao, W., and Burkhardt, H. (1997). Camera calibration

based on 3d-point-grid. In Proceedings of the 9th International Conference on

Image Analysis and Processing-Volume I - Volume I, ICIAP ’97, pages 636–643,

London, UK. Springer-Verlag.

[185] Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans.

Pattern Anal. Mach. Intell., 22, 1330–1334.

[186] Zhong, B. and Liao, W. (2007). Direct curvature scale space: Theory and

corner detection. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 29(3), 508 –512.

[187] Zhuang, H. and Wu, W.-C. (1996). Camera calibration with a near-parallel

(ill-conditioned) calibration board configuration. Robotics and Automation, IEEE

Transactions on, 12(6), 918 –921.

[188] Zollner, H. and Sablatnig, R. (2004). Comparision of methods for geometric

camera calibration using planar calibration targets. In W. Burger and J. Scharinger,

198

Ph.D. Thesis - Michael Kinsner McMaster - Computer Engineering

editors, Digital Imaging in Media and Education, Proc. of the 28th Workshop of the

Austrian Association for Pattern Recognition (OAGM/AAPR), volume 179, pages

237–244. Schriftenreihe der OCG.

199

