Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9440
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLightstone, M.F.en_US
dc.contributor.authorRundle, Charlesen_US
dc.date.accessioned2014-06-18T16:47:06Z-
dc.date.available2014-06-18T16:47:06Z-
dc.date.created2011-06-06en_US
dc.date.issued2009-09en_US
dc.identifier.otheropendissertations/4563en_US
dc.identifier.other5581en_US
dc.identifier.other2048322en_US
dc.identifier.urihttp://hdl.handle.net/11375/9440-
dc.description.abstract<p>A systematic validation of the computational fluid dynamics code ANSYS CFX for atria geometries is presented. Turbulent natural convection, radiation heat transfer and conjugate heat transfer are essential to the performance of an atrium and are all validated separately. In order to be thorough, the initial validations involve the fundamental simulations for each phenomenon. A simulation of a complete atrium is also presented using the conclusions reached in the previous validations.</p> <p>The validation of each of the phenomena was successful. Turbulent natural convection simulations yielded two suitable turbulence models, with the preference for k-ω model being decided by a narrow margin. The radiation validations proved that the Discrete Transfer model was an accurate model and the best offered by ANSYS CFX. Conjugate heat transfer showed that ANSYS CFX was capable of capturing the qualitative aspects of the phenomenon. The final atrium simulations showed the expected over prediction of temperature in the atrium, and an under prediction of the stratification. The atrium simulation proved insensitive to façade emissivity. The magnitude of the solar radiation heat flux did change the temperature and velocity field. It was shown that ANSYS CFX was capable of modeling the important phenomena but more accurate boundary conditions are required to obtain the best results possible.</p>en_US
dc.subjectMechanical Engineeringen_US
dc.subjectMechanical Engineeringen_US
dc.titleValidation of Computational Fluid Dynamics for Atria Geometriesen_US
dc.typethesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
55.16 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue