Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9393
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZhitomirsky, Igoren_US
dc.contributor.authorLi, Yingyingen_US
dc.date.accessioned2014-06-18T16:46:55Z-
dc.date.available2014-06-18T16:46:55Z-
dc.date.created2011-06-06en_US
dc.date.issued2010-12en_US
dc.identifier.otheropendissertations/4520en_US
dc.identifier.other5538en_US
dc.identifier.other2046215en_US
dc.identifier.urihttp://hdl.handle.net/11375/9393-
dc.description.abstract<p>New electrochemical deposition methods have been developed for the fabrication of advanced composite coatings for biosensors applications. The methods are based on electrodeposition of biopolymers, such as cathodic electrodeposition of chitosan, anodic electrodeposition of alginic acid and hyaluronic acid. Another approach is based on electrolytic deposition and electrophoretic deposition of ceramic materials and chitosan. Electrochemical strategies have been discovered for the electrochemical co-deposition of polymers with enzymes, such as glucose oxidase and hemoglobin. Glucose oxidase was used as a model enzyme for the development of new electrochemical strategies for the fabrication of composite coatings for applications in biosensors. New strategies have been further utilized for the fabrication of novel composites containing hemoglobin. It was found that co-deposition of biopolymers and enzymes from the solutions resulted in the fabrication of composite materials which can keep the activity of the enzymes.</p> <p>Electrochemical methods have been developed for the deposition of composite coatings containing ceramic materials (ZnO) in the matrix of chitosan. The composite coatings can be utilized for the immobilization of enzymes by the electrostatic attraction. The composition and microstructure of the composite coatings were investigated. The composition of these nanocomposite coatings can be varied by variation of bath composition for electrodeposition. The deposition yield was studied at various deposition conditions. Electrochemical deposition mechanisms have been investigated and discussed. Obtained results pave the way for the fabrication of novel coatings for immobilization of enzymes and for application in advanced biosensors.</p>en_US
dc.subjectMaterials Science and Engineeringen_US
dc.subjectMaterials Science and Engineeringen_US
dc.titleAdvanced materials and electrochemical fabrication methods for application in biosensorsen_US
dc.typethesisen_US
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.97 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue