Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9303
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHoare, Todden_US
dc.contributor.authorSivakumaran, Daryl N.en_US
dc.date.accessioned2014-06-18T16:46:33Z-
dc.date.available2014-06-18T16:46:33Z-
dc.date.created2011-06-02en_US
dc.date.issued2010-09en_US
dc.identifier.otheropendissertations/4439en_US
dc.identifier.other5459en_US
dc.identifier.other2043805en_US
dc.identifier.urihttp://hdl.handle.net/11375/9303-
dc.description.abstract<p>Hydrogels are water soluble polymer networks that are similar to the extra-cellular matrix of cells. Drug delivery systems based on hydrogels are of interest given their high biocompatibility. Obstacles with their use include their macroscopic dimensions (requiring surgical implantation) and quick elution of drugs from the swollen hydrogel matrix.<br /><br />These challenges can be addressed through the use of microgels, hydrogel particles with nanoscale dimensions. Microgels made from poly(N-isopropylacrylamide) (PNIPAM)) are of particular interest given that the effective diameter and water content of these microgels decreases at ~32°C. The degree of des welling and drug release rates can be tuned by controlling distributions of comonomers inside micro gels. Microgels can be immobilized within an injectable hydrogel network which is a liquid outside the body but quickly gels upon injection inside the body.<br /><br />The bulk, entrapping hydro gels were fabricated from carboxymethyl cellulose (CMC) and dextran modified with hydrazide (CMC A) and aldehyde (Dex B) functional groups. When mixed via co-injection through a needle at concentrations of 2 wt%, a hydrazone-crosslinked hydrogel network was formed. AA-NIPAM micro gels were synthesized via mixed precipitation-emulsion free radical polymerization in a dilute (~1 wt% monomer) aqueous solution and were co-injected with the B polymer for encapsulation inside the hydrogel.<br /><br />Current results show that the release of bupivacaine, a cationic local anesthetic, can be sustained over a period of up to 30 days using these composite hydrogel systems. Release rates scaled directly with the anionic functional group content of the micro gel. Release rates from the composite microgels appear to be driven by ion exchange between the microgel and drug as opposed to simple diffusion.<br /><br />The composite hydro gels, hydrogel pre-polymers, and microgels all showed no significant cytotoxicity to fibroblasts or myoblasts at concentrations up to 2mg/mL according to the MTT assay, suggesting their utility as effective in vivo drug delivery vehicles.</p>en_US
dc.subjectChemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleInjectable In Situ Gellable Hydrogel-Microgel Composites For Drug Deliveryen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.92 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue