Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9221
Title: Microfluidic Reference Electrode for Use in BioFET Sensor Systems
Authors: SafariMohsenabad, Salman
Advisor: Selvaganapathy, P. R.
Deen, M. J.
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: Nov-2010
Abstract: <p>Biosensors, used in medical diagnostics, increasingly use genomic information (DNA) to rapidly and accurately determine the species present in the sample. Since, the DNA inherently has a negative charge, electrical methods provide a direct technique to sense it. This transduction has been achieved by using a biological Field-Effect-Transistor (BioFET) structure, where hybridization of a single stranded DNA (indicative of the biological species) with a complementary strand from the sample solution causes a change in the transistor characteristics that could be read out electrically. The accuracy of sensing using the BioFET is critically dependent on imposition of a highly stable potential which is performed using a reference electrode.</p> <p>Design and fabrication of a miniaturized silver/silver chloride (Ag/AgCI) reference electrode is introduced in this thesis for use in BioFET. The electrode consists of Ag/AgCl wire which is embedded into a PDMS microchannel enclosed by a microcontact printed nanoporous polycarbonate membrane. The microchannel is filled with KCI solution as the internal solution.</p> <p>By modifying the electrodeposition method, nanosheet AgCI structure was grown rather than the conventional globular morphology. The bare Ag/AgCl potential drift with the former morphology was found to be</p> <p>In conclusion, a modified electrodeposition method and free-diffusion liquid junction micro fluidic reference electrode is proposed to improve the stability and extend the lifetime of a reference electrode with very low potential drift.</p>
URI: http://hdl.handle.net/11375/9221
Identifier: opendissertations/4363
5381
2041352
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.96 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue