Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9174
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPelton, Robert H.en_US
dc.contributor.authorRen, Pengchaoen_US
dc.date.accessioned2014-06-18T16:45:57Z-
dc.date.available2014-06-18T16:45:57Z-
dc.date.created2011-05-31en_US
dc.date.issued2010-06en_US
dc.identifier.otheropendissertations/4320en_US
dc.identifier.other5338en_US
dc.identifier.other2039698en_US
dc.identifier.urihttp://hdl.handle.net/11375/9174-
dc.description.abstract<p>Paper wet-strength is very important in many situations. Traditional wet strengthening agents such as formaldehyde-based resins and polyamide- epichlorohydrin (PAE) resins have been criticized to be a source of organochlorine compounds (l). This research aims at developing an efficient and environmental- friendly method to improve paper wet-strength. The new method combines the utilization of cellulose oxidation catalyzed by 2,2,6,6-tetramethyl-l-piperidinyloxy (TEMPO) and the application of a new commercialized polymer, polyvinylamine (PYAm).</p> <p>The TEMPO oxidation is known to introduce aldehyde and carboxyl groups on cellulose. In this research, an immobilized catalyst, polyvinylamine grafted TEMPO was synthesized and used for cellulose oxidation. The oxidation followed Anelli protocol, i.e. using NaCIO/NaBr as the primary oxidant. By using PVAm-TEMPO, we expect two advantages: a) upon adsorption onto fiber surfaces, PVAm-TEMPO could catalyze the oxidization locally and neighboring amines could then bond to the freshly formed aldehydes to impart strength. b) The oxidation catalyzed by immobilized TEMPO would be restricted to the exterior fiber surfaces because of the large size of PVAm-TEMPO. This will avoid the damage of fiber interior structures which is usually associated with free TEMPO oxidation and thus retain the fiber strength.</p> <p>Wet cellulose-to-cellulose adhesion was evaluated by measuring the force required to separate two wet cellulose films laminated with PVAm. Cellulose wet-strength could be improved from almost 0 to 40 N/m if oxidation and PYAm addition were combined in a proper way. Three methods were developed to do this, namely: direct coating method, adsorption method and one step method.</p> <p>Treatment conditions such as the optimum dosage of sodium bromide during oxidation and the best pressing temperature after PVAm application were investigated.</p> <p>The catalytic activity of PVAm-TEMPO was demonstrated by the oxidation of methylglyoxal (a water-soluble aldehyde) in a membrane catalyst reactor. The supported TEMPO showed high reaction activity.</p>en_US
dc.subjectChemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleThe Use of Polyvinylamine-supported TEMPO Oxidation in Wet-strengthening of Paperen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.23 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue