Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9124
Title: Numerical Investigation of Multiple-Impinging Slot Jets in the Gas-Jet Wiping of Liquid Zinc Coatings
Authors: Tamadonfar, Parsa
Advisor: McDermid, Joseph R.
Hrymak, Andrew N.
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: Sep-2010
Abstract: <p>A turbulent impinging slot jet is a device which is used in various industrial applications such as glass tempering, heating of complex surfaces, cooling of turbine blades, cooling of electronic devices and in the continuous hot-dip galvanizing line, which is the focus of this study. An impinging slot jet is used to control the zinc film thickness on the sheet substrate to reach uniform product coating thickness by applying a pressure gradient and shear stress distribution on the moving substrate, after immersion in a bath of molten zinc. The impinging jet wipes the excess molten zinc from the steel strip through the combined effects of a pressure gradient and shear stress distribution on the steel strip.</p> <p>In this study, the fluid flow of three multiple-impinging slot jet configurations discharging air at high velocity on a moving substrate were investigated numerically. Computational fluid dynamics was used to determine the wall pressure results and wall shear stress distributions due to the multiple impinging slot jets, and these results were used as boundary conditions in an analytical model to estimate the final liquid zinc thickness on the substrate. The standard k - ε turbulence model with non-equilibrium wall treatments was used to capture the turbulence parameters in the flow field.</p> <p>The knowledge of using multiple-impinging slot jets in the hot-dip galvanizing line process as a wiping actuator is quite limited. There is not any systematic work available in using these devices as a wiping actuator. In this study, three models of multiple slot jets were developed numerically with the goal of estimating the coating weight on the moving sheet substrate. The conventional model of a single-impinging slot jet was used as a base case for comparing the wall pressure results, wall shear stress distributions and consequently the coating weight data on a moving substrate with different multiple-impinging slot jet configurations. Adjusting the various process parameters such as main slot jet Reynolds number (Re<sub>m</sub>), auxiliary slot jet Reynolds number (Re<sub>a</sub>), plate-to-nozzle ratio (z / d) and sheet substrate velocity (V<sub>substrate</sub>) allows the producers to control the coating weight on a moving sheet substrate.</p> <p>For this study, the numerical simulations were solved using FLUENT commercial code. A comprehensive set of numerical modeling over a wide range of process variables was performed for all configurations in order to present a broad summary of the coating weight trends in the wiping process. A full analysis of the wall pressure distributions and wall shear stress results, as well as coating weight estimation generated under different impinging slot jets have been presented in this study.</p>
URI: http://hdl.handle.net/11375/9124
Identifier: opendissertations/4275
5294
2039127
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
34.96 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue