Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9112
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBalasubramaniam, Rameshen_US
dc.contributor.authorBridgewater, Jean Heslop Courtneyen_US
dc.date.accessioned2014-06-18T16:45:40Z-
dc.date.available2014-06-18T16:45:40Z-
dc.date.created2011-05-27en_US
dc.date.issued2010en_US
dc.identifier.otheropendissertations/4264en_US
dc.identifier.other5283en_US
dc.identifier.other2035671en_US
dc.identifier.urihttp://hdl.handle.net/11375/9112-
dc.description.abstract<p>Twelve participants performed a bimanual coordination task with the hands in different force field environments. Both in-phase and anti-phase coordination modes were examined. Mean relative phase absolute error measurements represented how accurate the phase relationship was, and the standard deviation of relative phase indicated how stable the coordination mode was. When the fingers were being moved in the same force environments, coordination was more accurate and stable, compared to when the hands were placed in mismatched force environments. Having one hand in a velocity dependent force-field produced less accurate coordination than when one hand was in a position dependent force-field. When coordinated movements were performed with at least one hand in viscous force-field environment, reduced coordination stability was observed, especially during anti-phase movements. There are several spatial, biomechanical and neuromuscular constraints that could have influenced coordination performance. The proposed mechanisms that affected coordination included the differences in neural compensation for different types of force-fields. As shown in previous studies, elastic loads generated later onset of EMG activity whereas viscous loads generated a higher rate of force production. The inability of the extensors muscles to overcome the load resistance in the viscous force-field affected coordination. These results support a two-tiered extension of the HKB model of bimanual coordination.</p>en_US
dc.subjectKinesiologyen_US
dc.subjectKinesiologyen_US
dc.titleThe influence of position and velocity dependent loads on bimanual coordinationen_US
dc.typethesisen_US
dc.contributor.departmentKinesiologyen_US
dc.description.degreeMaster of Science in Kinesiologyen_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.09 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue