Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9099
Title: DEVELOPMENT OF AN ACOUSTO-OPTIC TUNABLE FILTER BASED TIME-DOMAIN FLUORESCENCE SPECTROMETER WITH HIGH SCANNING SPEED AND HIGH THROUGHPUT FOR OPTICAL BIOPSY APPLICATIONS
Authors: Hwang, Young Ji
Advisor: Fang, Qiyin
Department: Engineering Physics
Keywords: Engineering Physics;Engineering Physics
Publication Date: Nov-2009
Abstract: <p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Times; color: #343434} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Times; color: #4c4c4c} span.s1 {font: 10.5px Times} span.s2 {color: #4c4c4c} span.s3 {color: #343434} span.s4 {color: #7a7a7a} span.s5 {color: #676767} span.s6 {color: #030303}</p> <p>In this project, we have developed an acousto-optic tunable filter (AOTF) -based timeresolved fluorescence spectroscopy (AOTF-TRFS) apparatus capable of acquiring fluorescence spectra and lifetimes of biological fluorescent probes with high data acquisition speed required for real-time clinical diagnostics. The system incorporates a non-collinear TeO₂ AOTF, a gated multichannel plate photomultiplier tube (MCP-PMT), a picosecond Nd:YAG pulsed laser, a digital oscilloscope with high sampling rate and a bifurcated fiber optic probe for light delivery and collection. Typically low throughput of the AOTF was enhanced by collecting both first order diffraction beams. The system performance was evaluated by measuring the fluorescence of 9-CA, fluorescein, NADH and FAD. The emission peaks in time-integrated spectra and the retrieved decay lifetimes were in good agreement with literature values over the desired spectral region between 370 nm and 550 nm. The system was able to collect a set of time-resolved fluorescence decay data for a single point site across a 200 nm wavelength range at 5 run increments within 4 s, which is a significant improvement over the previous generation gratingbased instrument.</p>
URI: http://hdl.handle.net/11375/9099
Identifier: opendissertations/4252
5270
2035041
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
30.51 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue