Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9066
Title: Strengthening of Reinforced Concrete Beams using Anchored Near Surface Mounted Bars
Authors: Petrina, Antony David
Advisor: Razaqpur, A.G.
Department: Civil Engineering
Keywords: Civil Engineering;Civil Engineering
Publication Date: Jun-2009
Abstract: <p>To delay the onset of delamination and to ensure the CFRP continues to supply strength after initial delamination of reinforced concrete beams strengthened with near surface mounted CFRP bars, a new mechanical anchoring system was developed and tested in this investigation. The anchors were integrally connected to the CFRP bars and extracted from a proprietary product commonly known as NEFMAC. The anchored bars were installed by cutting grooves into the concrete cover, boring holes at anchor locations and using epoxy to bond the strengthening bars to the groove surfaces.<br /> <br /> A total of seven simply-supported reinforced concrete beams were tested in fourpoint bending to study the effectiveness of the proposed anchoring system. One beam served as a control specimen, two beams were strengthened with unanchored near surface mounted bars and the remaining four beams were strengthened with the anchored bars. As an exploratory study two of the four anchored beams were also strengthened with anchored near surface mounted CFRP transverse bars to determine if the system is an acceptable substitute for internal steel stirrups.<br /> <br /> Results of this study reveal that the anchors can delay delamination and after initial delamination, the anchored beams continued to carry the applied load whereas the unanchored beams lost strength immediately following concrete cover delamination. Although there was not a significant gain in flexural capacity in the anchored beams relative to the unanchored beams, the improved ductility provided by the new system shows promise. Further investigation is needed to determine the number of anchors needed, depth of penetration, size and location of such anchors to achieve composite behaviour between the strengthening bars and the reinforced concrete section.</p>
URI: http://hdl.handle.net/11375/9066
Identifier: opendissertations/4222
5240
2032170
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
9.31 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue