Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9034
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJones, K.en_US
dc.contributor.authorAl-Haydari, Mariam D.en_US
dc.date.accessioned2014-06-18T16:45:13Z-
dc.date.available2014-06-18T16:45:13Z-
dc.date.created2011-05-25en_US
dc.date.issued2010-09en_US
dc.identifier.otheropendissertations/4193en_US
dc.identifier.other5211en_US
dc.identifier.other2030192en_US
dc.identifier.urihttp://hdl.handle.net/11375/9034-
dc.description.abstract<p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica}</p> <p>Biomaterials are thought to be the magical solution to improving the quality of life and lengthening lifespans of human beings. To date, there is no biomaterial that can completely escape immune responses. However, successes have recently been made in reducing immune responses to biomaterials.P(N-isopropylacrylamide) (PNIPAM), chitosan , and hyaluronan are examples of polymers that are gaining great interest in the field of biomaterials. The most attractive property of PNIPAM is thermo-responsiveness. Adequate literature has been published on improving the mechanical strength of PNIPAM, but not much has been published on host response to PNIPAM based graftpolymers. Chitosan and hyaluronan are generally considered non-toxic and nonimmunogenic.</p> <p>The first part of this project focuses on the synthesis and characterization of hyaluronan-grafted-chitosan-grafted-P(NIPAM-co-acrylic acid), while the second part examines the effect of grafting on the extent of immune reaction compared to P(NIPAM-co-acrylic acid) alone. The incorporation of chitosan into P(NIPAM-co-acrylic acid), and hyaluronan into chitosan-grafted-P(NIPAM-coacrylic acid) was confirmed by Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance , 2,4,6-trinitrobenzenesulfonic acid (TNBS), and Lower Critical Solution Temperature (LCST) experiments. The optimum molecular p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica}</p> <p>weight for P(NIPAM-co-acrylic acid) that could provide sufficient amount of reactive sites while maintaining LCST below 37°C was found to be in the range of 2-2.5kDa. Western blotting results demonstrated that incorporating chitosan into P(NIPAM-co-acrylic acid) reduces the amount of fibrinogen, fibronectin, and vitronectin adsorbed, and eliminates complement component 3 (C3) adsorption.</p> <p>Furthermore, incorporating hyaluronan eliminates more inflammatory proteins including fibrinogen and reduces Immunoglobulin G (lgG) adsorption. Chitosan-grafted-P(NIPAM-co-acrylic acid) elicited lower levels of inflammatory cytokine release compared to P(NIPAM-co-acrylic acid), but higher than hyaluronan-grafted-chitsan-grafted-P(NIPAM-co-acrylic). In vitro and in vivo results revealed lowest density of leukocytes adhesion to hyaluronan containing surface compared to the other surfaces. The extent and duration of inflammation was reduced on chitosan-grafted-P(NIPAM-co-acrylic acid) and hyaluronangrafted-chitosan-grafted-P(NIPAM-co-acrylic acid) hydrogels.</p>en_US
dc.subjectChemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleImmune Response to Synthesized Pnipam-Based Graft Hydrogels Containing Chitosan and Hyaluronic Aciden_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.79 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue