Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9032
Title: Great Lakes Coastal Wetlands Monitoring and Assessment Techniques
Authors: Kostuk, Kristina
Advisor: Chow-Fraser, Patricia
Department: Biology
Keywords: Biology;Biology;Biology
Publication Date: 2006
Abstract: <p>The overall objective of this study is to contribute to general knowledge on bioassessment of Great Lakes coastal wetlands. Coastal wetlands (also referred to as marshes) are uriique systems that experience day-to-day changes due to storms, high winds, and rapid changes in barometric pressure, exposing the shorelines to wave conditions; in addition to this annual and seasonal water level flucations contribute to this distinctive ecosystem.</p> <p>The first chapter examines the influence of gear type and sampling protocol on fish catch data that are used to calculate biotic indices of wetland quality in Lake Huron. We surveyed fish communities in coastal wetlands of eastern Georgian Bay and Long Point Bay, Lake Erie, to determine biases associated with different gear types and sampling protocols. Parallel data collected from 26 wetlands were used to compare species richness obtained by two standardized protocols: fyke nets (set for 24-h parallel to shore) and boat electrofishing (1500 shock seconds during the day). We found differences between sampling protocols with respect to abundances and type of fish caught. Despite this difference, Wetland Fish Index (WFI; Seilheimer and Chow-Fraser 2006) scores derived from data obtained by the two gear types did not differ significantly. By contrast, when data for 6 exposed sites dominated by Scirpus were compared separately, we found significantly higher WFI scores associated with fyke net data compared with electrofishing data, and these differences were sufficiently large that they should not be ignored. We conclude that both methods can be used interchangeably in routine ecological assessments, as long as methods are used within areas of dense submergent vegetation.</p> <p>The second chapter used zoobenthos as a bio-indicator of wetland quality. "Zoobenthos" used in this study refers to the invertebrate primary and secondary consumers that are found associated with the sediment-water interface, and includes some of the zooplankton (copepods, cladocerans), which are found floating in the water column and many of the benthic invertebrates that reside on top of the sediment or that emerge from the sediment during the 24-h incubation period. It does not include any of the macroinvertebrates that live in emergent vegetation or that glide on the surface tension of the water. We determined that both water quality and aquatic macrophytes significantly influenced the distribution of zoobenthos. However, we also found that exposure also affected the type of invertebrates found in wetlands, regardless of waterquality conditions. We developed 26 metrics that could be used by wetland managers to assess wetland quality based solely on taxonomic composition of zoobenthos.</p>
URI: http://hdl.handle.net/11375/9032
Identifier: opendissertations/4191
5209
2030243
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
45.25 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue