Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/9019
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBenedek, Andrewen_US
dc.contributor.authorHorsti, Seppo Markkuen_US
dc.date.accessioned2014-06-18T16:45:09Z-
dc.date.available2014-06-18T16:45:09Z-
dc.date.created2009-06-26en_US
dc.date.issued1976-12en_US
dc.identifier.otheropendissertations/418en_US
dc.identifier.other1196en_US
dc.identifier.other881861en_US
dc.identifier.urihttp://hdl.handle.net/11375/9019-
dc.description.abstract<p>Membranes formed by constituents of ultrafiltration feed solutions on a support structure are called dynamic membranes. Lignin has the ability to form a self-rejecting membrane potentially useful for separating lignin from pulping wastes.</p> <p>Lignin solutions and pulp mill wastes were circulated past support tubes at different operating conditions. A typical product flux was about 7 gal/ft²day with about 99% rejection. The effect of the feed solution concentration, the pore size of the support structure and the cross-flow velocity were small on the membrane performance. A temperature increase from 30ºC to 70ºC increased the product flux by 130%. A higher operating pressure increased the product flux only slightly above a critical pressure of about 80 psi. The product flux was highly dependent on the pH, being e.g. 30 gal/ft²day at pH2 and 7.5 gal/ftday at pH//.</p> <p>Some chemical additives, reported to alter liquid conformation, were tested and the best results were given by addition of formaldehyde. It increased the product flux at pH2 from 30 gal/ft²day to 42 gal/ft²day. A pretreatment of the carbon support tubes by hydrochloric acid improved the product flux from 6 gal/ft²day to 16 gal/ft²day but the beneficial effect, in this case, was time dependent.</p>en_US
dc.subjectChemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleUltrafiltration of Alkalilignin Through Dynamic Membranes Formed of Feed Constituentsen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.49 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue