Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8971
Title: A Numerical and Experimental Study Of Ion-Drag Electrohydrodynamic Micropumps
Authors: Hasnain, Mohammed Syed
Advisor: Ching, Chan Y.
Selvanagapathy, Ravi
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: 2010
Abstract: <p>The objectives of this work are (i) to develop a numerical model for electrohydrodynamic micropumps, (ii) to investigate the effect of using a conductive agent in the working fluid to enhance the pump performance and (iii) to investigate the use of pulse voltage on EHD micropumps.</p> <p>A numerical model was developed that incorporates a charge model at the emitter electrode that is coherent to the electric field. The model results were found to be in good agreement with previous experimental results. A parametric study was performed to investigate the effect of the channel height and multi-stage spacing on the pump performance. Reducing the channel height reduced the flow rate but increased the pressure head, while increasing the multi-stage spacing improved the pump performance.</p> <p>The effect of using conductive agents in the working fluid was investigated using Ferrocene in HFE-7100. The Ferrocene was found to significantly improve the pump performance. However, at high voltages, the pressure could not be sustained for long periods of time. The effect of an applied pulse voltage on the performance of the micropumps was studied. A maximum pressure 3512 Pa was achieved at an applied pulse voltage between 500 V to 800V, pulse repetition rate of 5 Hz, and duty cycle of 60%.</p>
URI: http://hdl.handle.net/11375/8971
Identifier: opendissertations/4135
5154
2023331
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
40.34 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue