Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8912
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJain, Mukesh K.en_US
dc.contributor.authorZHAO, CHENGHAOen_US
dc.date.accessioned2014-06-18T16:44:38Z-
dc.date.available2014-06-18T16:44:38Z-
dc.date.created2011-05-12en_US
dc.date.issued2009en_US
dc.identifier.otheropendissertations/4080en_US
dc.identifier.other5099en_US
dc.identifier.other2012219en_US
dc.identifier.urihttp://hdl.handle.net/11375/8912-
dc.description.abstract<p>The major advantage of the Powder Metallurgical (P/M) manufacturing<br />process is its ability to shape powder directly into a final component form with a<br />primary goal of a high quality, homogeneity of density and mechanical properties<br />and productivity. In this research, powder die filling, powder transfer and powder<br />compaction process have been studied in succession using a novel experimental<br />set-up that utilizes a high strength transparent wall section to observe and record<br />the particle movement and powder compaction during the entire sequence<br />leading up to the formation of a green part. The natural powder pattern itself, as<br />observed from the transparent wall section, is utilized for obtaining full-field<br />displacement and strain measurement for the first time. This strain field data is<br />converted into density distribution data and is validated through other commonly<br />used density measurement methods. The test set-up and the strain<br />measurement technique offer a means of quickly obtaining density distribution<br />data in select cases. In addition to the above, several powder flow characteristics<br />during die filling, powder transfer and powder compaction under a range of test<br />conditions have been noted through a series of high-speed photographic<br />recordings. The role of transfer speed and friction in the development of density<br />gradient and crack formation has been experimentally assessed. Another new<br />method of density measurement based on surface roughness of the compact has<br />been investigated. Finally, powder compaction simulations of the lab-based<br />experiments have been carried out using modified Drucker-Prager Cap model<br />within the ABAQUS CAE. The simulation results are in good agreement with<br />experimental data.</p>en_US
dc.subjectMechanical Engineeringen_US
dc.subjectMechanical Engineeringen_US
dc.titleA STUDY OF IRON POWDER COMPACTION FOR AUTOMOBILE COMPONENTS APPLICATIONen_US
dc.typethesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
47.36 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue