Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8689
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTait, Michael J.en_US
dc.contributor.authorCassolato, Richard Marcusen_US
dc.date.accessioned2014-06-18T16:43:41Z-
dc.date.available2014-06-18T16:43:41Z-
dc.date.created2011-01-26en_US
dc.date.issued2007-05en_US
dc.identifier.otheropendissertations/3873en_US
dc.identifier.other4890en_US
dc.identifier.other1746763en_US
dc.identifier.urihttp://hdl.handle.net/11375/8689-
dc.description.abstract<p>ABSTRACT</p> <p>The first application of the tuned liquid damper (TLD) to mitigate the</p> <p>dynamic vibrations of structures was only around 20 years ago and has just been</p> <p>recently applied in North America. TLDs are partially fluid filled tanks (usually</p> <p>water) with a fundamental sloshing frequency tuned close to the frequency of the</p> <p>dynamic mode of structural vibration to be suppressed. Water alone is</p> <p>insufficient to achieve the level of damping typically required for design.</p> <p>Damping devices are often submerged in the water to greatly increase the inherent</p> <p>TLD damping. The damping device investigated in this study is a thin sharpedged</p> <p>horizontal-slat screen. TLDs with such screens of a particular solidity are</p> <p>designed for one target amplitude of structural response and have limited</p> <p>efficiency over a range of structural response. To increase the efficiency, the</p> <p>concept of smart screens is introduced in this study.</p> <p>Smart screens is the name given to a damping screen that alters its fluid</p> <p>pressure-loss characteristics at differing levels of excitation, (ideally) in a passive</p> <p>state of control. Symmetric fixed-angle screens and oscillating (rotating) parallellinked</p> <p>screens are experimentally investigated inside a rectangular TLD on a</p> <p>shake-table under sinusoidal motion in this study.</p> <p>TLDs have similar principles to common tuned mass dampers (TMD) and</p> <p>are analyzed accordingly. The TLD equipped with fixed-angle screens is</p> <p>modelled with linear numerical fluid models to simulate the TLD performance for preliminary design purposes. An inclined screen alters the pressure-loss</p> <p>characteristics from its typical vertical position, which in turn changes the</p> <p>inherent TLD damping, allowing damping to be controlled by simple screen</p> <p>rotation. The analytical models, including the utilization of a pressure-loss</p> <p>coefficient for an inclined horizontal-slat screen in oscillatory flow developed in</p> <p>this study, are compared with experimental results to verify their accuracy and</p> <p>ascertain limitations.</p> <p>Oscillating smart screens are investigated mainly for their practical</p> <p>consideration in a preferred passive mode of control. The screens rotate</p> <p>automatically with changes in fluid velocity (or excitation amplitude). Their</p> <p>ability to maintain a near-constant amount of TLD damping (or resonant energy</p> <p>dissipation) is examined. Other implementations of (passive) smart screens are</p> <p>possible and suggestions for future study are recommended.</p> <p>A TLD equipped with the mathematically modelled symmetric fixed-angle</p> <p>screens is theoretically investigated in a hypothetical structure-TLD system. This</p> <p>system demonstrates the ability of a smart screen to change its damping</p> <p>characteristics-altering the angle of inclination in this study-over a range of</p> <p>structural response thereby maintaining an optimal level of efficiency over a</p> <p>range of structural response accelerations.</p>en_US
dc.subjectCivil Engineeringen_US
dc.subjectCivil Engineeringen_US
dc.titleThe performance of a tuned liquid damper equipped with inclined and oscillating damping screensen_US
dc.typethesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.73 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue