Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8622
Title: Physics-based microwave device modeling and circuit optimization
Authors: Cai, Qian
Advisor: Bandler, John W.
Department: Electrical and Computer Engineering
Keywords: Electrical and Computer Engineering;Electrical and Computer Engineering
Publication Date: Sep-1992
Abstract: <p>This thesis addresses physics-based microwave device modeling and circuit optimization, including conventional and statistical device modeling, performance-driven and yield-driven circuit design. Approaches for physics-based device modeling are reviewed. Fundamental techniques of physics-based analytical MESFET modeling are presented. Device performance and parameter extraction with physics-based models (PBMs) are discussed. Nonlinear circuit analysis with PBMs integrated into the harmonic balance (HB) method is presented. A detailed formulation of the HB equations with MESFET PBMs is given. An efficient Newton method for solving the HB equations is discussed. Gradient-based optimization for circuit design is addressed. Physics-based circuit optimization integrates efficient adjoint sensitivity analysis approaches, the HB simulation method and PBMs. The physical (geometrical, material and process-related) parameters can be directly treated as design variables. Simultaneous device-circuit design is facilitated. The features of physics-based circuit optimization are demonstrated by two circuit design examples. Statistical modeling at different levels is discussed. Statistical parameter extraction and postprocessing are used to obtain statistical models to predict parameter statistics. The resulting statistical device models are verified by comparing the statistics of measurements with the corresponding statistics obtained by Monte Carlo simulation. Statistical modeling with equivalent circuit models (ECMs) and PBMs is demonstrated. Yield-driven circuit design is addressed based on a one-sided ℓ₁ optimization algorithm with a generalized ℓp function. Yield optimization of MMICs with PBMs for passive and active devices is discussed. Its features are demonstrated by a three stage X-band MMIC amplifier design. A comprehensive approach to predictable yield-driven circuit design exploiting a novel statistical model is presented. For the first time, the yield estimated by Monte Carlo simulation is shown to be consistent with the yield predicted directly from device measurement data. Simultaneous device-circuit yield optimization assisted by yield sensitivity analysis is also demonstrated.</p>
URI: http://hdl.handle.net/11375/8622
Identifier: opendissertations/3812
4829
1724012
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.32 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue