Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8607
Title: Dividing annular/two-phase flow in horizontal T-junctions
Authors: Ballyk, John D.
Advisor: Shoukri, M.
Department: Mechanical Engineering
Keywords: Mechanical Engineering;Mechanical Engineering
Publication Date: Sep-1992
Abstract: <p>The results of an experimental and analytical investigation of the separation phenomenon in dividing annular two-phase flow is presented. Detailed experiments have been carried out with a steam-water loop to isolate the effects of flow split, inlet quality, inlet mass flux and branch diameter on the phase and pressure distribution characteristics in horizontal T-junctions. Through the set of measurements made in the experimental program, the phase separation and pressure distribution characteristics were shown to be strongly interdependent. Based on these measurements, a physical model describing the phase separation mechanism is presented. This physical model is then developed mathematically. A model to predict the dividing flow characteristics for annular flow in a T-junction is proposed consisting of mixture and vapor phase continuity equations, two pressure change correlations and a closure relationship. The pressure change from the inlet through the run of the T is modelled by way of a balance of axial momentum at the junction based on a separated flow assumption. The branch pressure change is modelled using a balance of mechanical energy for the branching flow consisting of reversible and irreversible components. In the development of the branch model, a new equivalent inlet density for the branching flow ($\rho\sbsp{1}{*}$) and a two-phase multiplier ($\Phi\sp*$) are defined. The closure relationship links the phase separation characteristics with the junction pressure changes. It involves a balance between pressure and inertia forces within the junction volume defining a dividing surface for each phase between the run and branch flows. The degree of phase redistribution is then determined using a well defined inlet flow distribution. The model is capable of predicting the experimentally observed phase separation characteristics from three independent studies of annular/steam-water and air-water flow in dividing T-junctions.</p>
URI: http://hdl.handle.net/11375/8607
Identifier: opendissertations/3799
4816
1720531
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
2.53 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue