Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8490
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBalakrishnan, Narayanaswamyen_US
dc.contributor.authorChilds, Michael Aaronen_US
dc.date.accessioned2014-06-18T16:43:04Z-
dc.date.available2014-06-18T16:43:04Z-
dc.date.created2010-12-19en_US
dc.date.issued1996-04en_US
dc.identifier.otheropendissertations/3693en_US
dc.identifier.other4710en_US
dc.identifier.other1702390en_US
dc.identifier.urihttp://hdl.handle.net/11375/8490-
dc.description.abstract<p>In this thesis we generalize several recurrence relations for moments of order statistics from I.I.D. random variables to I.NI.D. random variables. By considering the multiple outlier model as a special case, these I.NI.D. recurrence relations will enable use to compute all of the means, variances, and covariances of all order statistics from a sample (possibly) containing multiple outlier in a simple recursive manner. We will then use these results to address the problem of robust estimation of parameters in the presence of multiple outliers by examining the bias and mean square error of various linear estimators of the parameters of the underlying population. We will initiate work on the multiple outlier model for the logistic and Pareto distributions by deriving I.NI.D. recurrence relations, the Laplace distribution by making use of the results of Balakrishnan (1994a) who derived recurrence relations for the I.NI.D. exponential model, and the exponential model by providing an alternative method of proof for the results of Balakrishnan (1994a) and generalizing them to the I.NI.D. doubly truncated exponential model. In addition, we will consider tests for outliers. We will initiate work on testing for outliers when the underlying populations have the Laplace and logistic distributions and then examine and compare the performance of various test statistics based on certain power criteria. We also derive maximum likelihood estimators, conditional confidence intervals, and conditional tolerance intervals for the Laplace distribution based on Type-II right censored-samples and also some extensions to generally censored samples.</p>en_US
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleAdvances in statistical inference and outlier related issuesen_US
dc.typethesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.42 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue