Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8264
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLu, W. K.en_US
dc.contributor.authorYamada, Kenzoen_US
dc.date.accessioned2014-06-18T16:42:18Z-
dc.date.available2014-06-18T16:42:18Z-
dc.date.created2010-11-10en_US
dc.date.issued1977-06en_US
dc.identifier.otheropendissertations/3483en_US
dc.identifier.other4500en_US
dc.identifier.other1636660en_US
dc.identifier.urihttp://hdl.handle.net/11375/8264-
dc.description.abstract<p>Currently available theoretical formulation for the kinetics of slag-metal systems have been extended to clarify certain aspects of the system. Coupling factors for electrochemical reactions and for ionic diffusion have been defined to clarify the significance of coupling phenomena in the kinetics of multi-component systems. Theoretical equations for the interfacial reactions and the diffusion processes in both phases, in seven hypothetical pseudo-ternary slag-metal systems have been numerically solved by a finite difference method. Typical features of coupling phenomena, i.e.m acceleration and deceleration of reaction or diffusion, and up hill reaction or diffusion have been clearly demonstrated. Through numerical analysis, a modified form of "Sherwood Number", Shᵢ*≡kᵢL/ρDᵢ for a particular reaction i, is defined and found to be proper to explain the rate controlling steps for the over-all reaction. In the present analysis, the relationships between the modified Sherwood Number and rate controlling steps were found to be as follows: Sh*ᵢ > 360: diffusion control, 0.05 ≲ Sh*ᵢ ≲ 360: mixed control, Sh*ᵢ < 0.05: interfacial reaction control Thus non-trivial numerical solutions for slag-metal systems have been developed for the first time.</p>en_US
dc.subjectMaterials Science and Engineeringen_US
dc.subjectMetallurgyen_US
dc.subjectMaterials Science and Engineeringen_US
dc.titleA theoretical study of slag-metal reaction kinetics using a numerical techniqueen_US
dc.typethesisen_US
dc.contributor.departmentMetallurgy and Materials Scienceen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.22 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue