Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8097
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorElbestawi, M.Aen_US
dc.contributor.advisorSpence, A.D.en_US
dc.contributor.authorEl-Mounayri, Hazim A.en_US
dc.date.accessioned2014-06-18T16:41:50Z-
dc.date.available2014-06-18T16:41:50Z-
dc.date.created2010-09-30en_US
dc.date.issued1997-06en_US
dc.identifier.otheropendissertations/3330en_US
dc.identifier.other4355en_US
dc.identifier.other1588227en_US
dc.identifier.urihttp://hdl.handle.net/11375/8097-
dc.description.abstract<p>In machining, the ability to automatically generate an optimum process plan is an essential step toward achieving automation, higher productivity, and better accuracy. These requirements are particularly emphasized in die and mold manufacturing, where complex tool and workpiece geometries involved make generation of the process plan a difficult task. High die production costs, narrow tolerance requirements, and the continuous demand for new components make process planning and NC code generation very complex and error-prone tasks. The current research need is to develop a system that is based on a simulation of the actual machining process, rather than simple geometric verification. Such a machining process simulator is needed to respond to the current need to enhance CAD/CAM technology with a machining process simulation that accounts for process mechanics and dynamics. A major impediment to implementing these systems is the lack of a general and accurate method for extracting the required geometric information. In this thesis, a novel approach to perform this task is presented. It uses general and accurate representations of the part shape, removed material, cutting edge and rake face. Solid models are used to represent the part and removed volume, B-spline curves are used for the cutting edge representation and B-spline surfaces for the rake face. Next, a generic solid modeler based milling process simulation system for 3-axis machining of complex parts using flat and ball end mills is implemented. It consists of geometric and physical simulators. In the geometric simulation, the tool swept volume is generated for every completed tool path (one NC block) and intersected with the part, yielding the corresponding removed material volume. The tool cutting edges are then intersected with that volume to produce the tool-part immersion geometry in the form of in-cut segments. These and an expression for the chip thickness are used to determine the chip load distribution along the cutting edge. The updated part can be used instead of the removed volume in the intersection step to generate the in-cut segments. The physical simulator models the mechanics and dynamics of the cutting process and uses the chip load to compute instantaneous cutting forces and predict other process parameters. The milling process simulation is demonstrated and verified experimentally for 2 1/2- and 3-axis ball end milling. In addition, it is shown that geometric modelling of 4- and 5-axis milling using different tool shapes as well as other machining processes such as turning and drilling can be performed using the same approach.</p>en_US
dc.subjectMechanical Engineeringen_US
dc.subjectMechanical Engineeringen_US
dc.titleGeneric solid modelling based machining process simulationen_US
dc.typethesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.01 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue