Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8095
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTlusty, J.en_US
dc.contributor.authorGoel, B.S.en_US
dc.date.accessioned2014-06-18T16:41:50Z-
dc.date.available2014-06-18T16:41:50Z-
dc.date.created2010-09-30en_US
dc.date.issued1976-09en_US
dc.identifier.otheropendissertations/3329en_US
dc.identifier.other4356en_US
dc.identifier.other1588262en_US
dc.identifier.urihttp://hdl.handle.net/11375/8095-
dc.description.abstract<p>The dynamic behaviour of metal cutting process is investigated by measuring the various components of dynamic cutting force. For the complete description of dynamics of metal cutting it is necessary to give eight components belonging to the resultant dynamic cutting force in an orthogonal cutting process. These components originate from the two sides of chip, which under vibratory cutting conditions have undulations and are termed as inner and outer modulations respectively. The dynamic cutting forces are phase shifted with respect to their own modulations and are given respectively by real part and imaginary part of inner modulation, real part and imaginary part of outer modulation. Each of these four components are determined separately for main cutting force and thrust force and are specified as cutting force per unit amplitude of modulation per unit chip width, termed as dynamic cutting force coefficients. An experimental technique termed as the Double Modulation Method has been developed to measure the above eight coefficients for various cutting conditions of speed, feed, frequency, tool wear and work piece materials. The method is based on the Fast Fourier Transform of the measured signals of dynamic cutting forces and tool work piece relative displacement. The accuracy and reliability of the technique is established by comparing some of the results obtained from this method with those obtained from other two methods which are far simpler and conceptually more direct. These methods are termed as Kal's Method and Inner Modulation Method. The effects of various cutting conditions stipulated above on the individual coefficients have been investigated and the results are shown to be in agreement with the general practical observations. The result of stability analysis as performed by Moriwaki (21) using the coefficients measured in this work is included, to highlight the practical significance of the dynamic cutting force coefficients, for predicting the limit of stability.</p>en_US
dc.subjectMechanical Engineeringen_US
dc.subjectMechanical Engineeringen_US
dc.titleMEASUREMENT OF DYNAMIC CUTTING FORCE COEFFICIENTSen_US
dc.typethesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.14 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue