Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/8034
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKershaw, K.A.en_US
dc.contributor.authorCoxson, Stanley Darwynen_US
dc.date.accessioned2014-06-18T16:41:38Z-
dc.date.available2014-06-18T16:41:38Z-
dc.date.created2010-09-08en_US
dc.date.issued1983-05en_US
dc.identifier.otheropendissertations/3272en_US
dc.identifier.other4288en_US
dc.identifier.other1546638en_US
dc.identifier.urihttp://hdl.handle.net/11375/8034-
dc.description.abstract<p>The seasonal response patterns of net photosynthesis and respiration (and nitrogenase activity in Nostoc) are described within a multivariate framework of temperature, moisture and light for the alpine and grassland crustaceous lichens Rhizocarpon superficiale and Caloplaca trachyphylla respectively and for the grassland surface cyanophyte Nostoc commune. These physiological responses are discussed in context of each species' boundary layer environment, with particular emphasis placed on interactions between environmental constancy and adoption of acclimation strategies.</p> <p>For R. superficiale the high frequency of thermal fluctuations experienced by hydrated thalli, sometimes on an hourly basis, precluded any strategy of seasonal acclimation. Instead, photosynthetic rates exhibited a broad temperature response, remaining near 1 mg CO₂ h⁻¹g⁻¹ from 1 up to 21°C, with no changes evident between seasonal responses. In marked contrast C. trachyphylla shows a distinct winter/summer pattern of photosynthetic acclimation. In winter months rates are optimal near 7°C, while in summer the temperature optima of net photosynthesis shift to 21°C. These changes correlate well with predictable seasonal microclimate events, particularly those associated with winter Chinook snowmelt periods. A third pattern of response was seen in N. commune, where no seasonal changes in response patterns were evident and both nitrogenase activity and net photosynthesis were maximal near 35°C. This response pattern allows maximum carbon gain and nitrogen fixation during spring and summer periods following precipitation events, while its more sheltered aspect reduces the importance of winter snowmelt periods.</p>en_US
dc.subjectEcology and Evolutionary Biologyen_US
dc.subjectOther Ecology and Evolutionary Biologyen_US
dc.subjectEcology and Evolutionary Biologyen_US
dc.titleThe Ecophysiology of Surface Cryptogams from Alpine Tundra and Semi-Arid Grassland of Southwestern Albertaen_US
dc.typethesisen_US
dc.contributor.departmentBiochemistryen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.53 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue