Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7916
Title: The Effect of Nonstoichiometry on the Initial Sintering Kinetics of MnO₁₊ᵪ
Authors: Porter, Lawrence Richard
Advisor: Nicholson, P.S.
Smeltzer, W.W.
Department: Metallurgy and Materials Science
Keywords: Materials Science and Engineering;Metallurgy;Materials Science and Engineering
Publication Date: Feb-1978
Abstract: <p>A study has been made of the initial stage sintering kinetics of nonstoichiometric MnO as a function of the oxygen partial pressure. The shrinkage and neck growth were measured for pairs of oxide spheres in the temperature range 900-1100°C and pressure range 10ˉ¹⁴</p> <p>The shrinkage was analyzed using both the classical single mechanism control approach and the more recent simultaneous mechanism approach. It was found that the sintering behavior as a function of oxygen pressure, hence the concentration of Mn vacancies, does not follow a simple relationship has been suggested. The kinetics indicate grain boundary diffusIon control at oxygen pressures less than 10ˉ¹² atm. and greater than 10ˉ⁹ atm. and volume diffusion control at pressures in between.</p> <p>Using the simultaneous mechanism approach, the predominance of grain boundary control at low and high oxygen pressures was verified; however, a substantial contribution from volume diffusion was present. The volume diffusion contribution reached a maximum at 1 x 10ˉ¹⁰ atm., the same pressure at which the maximum shrinkage and shrinkage rate was found.</p> <p>Diffusion coefficients calculated from both methods of analysis agree well with published values and with the published defect structure for MnO.</p> <p>The surface topography of the spheres was studied. It was found to influence the sintering behavior substantially and to be dependent on the atmosphere composition. A qualitative model for the effect of surface topography is presented.</p>
URI: http://hdl.handle.net/11375/7916
Identifier: opendissertations/3161
4180
1455789
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.95 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue