Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7400
Title: Hillslope hydrology and runoff processes in a subarctic, subalpine environment
Authors: Carey, Kevin Sean
Advisor: Woo, Ming-ko
Department: Geography
Keywords: Geography;Geography
Publication Date: Sep-2000
Abstract: <p>Within the subalpine zone of a subarctic basin, hydrological processes were studied on four hillslopes within 5 km2 in an attempt to determine the factors that cause the variability in the magnitude and timing of water balance components. The hillslope was chosen as the scale of study as it links process operating at the point with streamflow, and exhibits strong contrasts in microclimate, vegetation, frost and soils, providing an ideal natural laboratory. Hillslopes showed strong asymmetry in the timing and magnitude of processes during the melt and summer period. On slopes with well drained soils and seasonal frost, vertical hydrological exchanges predominate over the entire year and slopes rarely contribute runoff for streamflow. In contrast, hillslopes underlain with permafrost and/or poorly drained soils with a capping organic layer produce strong lateral fluxes. Water balance information highlighted the principal factors that lead to differences in process magnitudes and timing. This information is important in understanding basin hydrology, as streamflow is a summation of lateral fluxes from slopes. The presence of ice-rich layers blocking soil interstices encourages runoff by restricting drainage. Runoff exhibits a two-layer flow system consisting of quickflow (pathways in the porous organic layer, pipes, rills, and interconnected depressions) and slowflow (pathways in underlying mineral soils and highly decomposed and compacted peat). Quickflow controls the shape and timing of the runoff hydrograph, which is influenced by properties of hillslope wetness and organic layer thickness. Recession analysis revealed variable source areas for runoff generation and highlighted the role of wetness-controlled hydrologic connectivity of a slope segment. Results from this thesis have implications for water resource inventories and predicting hydrologic behaviour of subarctic, subalpine hillslopes.</p>
URI: http://hdl.handle.net/11375/7400
Identifier: opendissertations/2680
3520
1388368
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.4 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue