Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7333
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPurdy, G.R.en_US
dc.contributor.authorTashiro, Kelvin M.en_US
dc.date.accessioned2014-06-18T16:39:00Z-
dc.date.available2014-06-18T16:39:00Z-
dc.date.created2010-07-13en_US
dc.date.issued1986-10en_US
dc.identifier.otheropendissertations/2613en_US
dc.identifier.other3587en_US
dc.identifier.other1392696en_US
dc.identifier.urihttp://hdl.handle.net/11375/7333-
dc.description.abstract<p>This thesis describes the phenomenon of chemically induced grain boundary migration, a process in which a grain boundary migrates in response to a chemical driving force. The migration characteristics from various binary alloy systems are documented, especially in the aluminum-zinc system where extensive measurements have been made in both static and dynamic situations. The dynamics of chemically induced grain boundary migration are also studied in conjunction with the growth of a second phase, a situation referred to as discontinuous precipitation. It is suggested that the force which is responsible for moving the boundary reveals different facets of itself for different cases. The facets of itself for different cases. The facets are extremes in the chemical force levels; one is at a low level and is suggested to be derived from coherency strains when solute penetration into the bulk is significant. The other force is a high level force and which originates from large concentration differences which exist across the boundary at low volume penetration levels. It is uncertain whether the transition between the two chemical driving force levels is continuous or discontinuous since the transition ranges are small. Elastic anisotropy is suggested to be responsible for the initiation of migration due to an unbalanced coherent strain energy present across the boundary. The migration process has been modeled macroscopically and computer simulated. At this time, current models of grain boundary structure are suggested to be inadequate to account for the coupling of a chemical force to grain boundary structural components.</p>en_US
dc.subjectPhysical Sciences and Mathematicsen_US
dc.subjectPhysical Sciences and Mathematicsen_US
dc.titleChemically Induced Grain Boundary Migration in Alloy Systemsen_US
dc.typethesisen_US
dc.contributor.departmentMaterials Scienceen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
3.81 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue