Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7258
Title: Properties of magnetic transition metal-bromide graphite intercalation compounds
Authors: Dube, Paul A.
Advisor: Datars, W.R.
Department: Physics
Keywords: Physics;Physics
Publication Date: 2002
Abstract: <p>The graphite intercalation compounds (GICs) of CoBr 2 , FeBr2 and NiBr2 have been prepared by intercalation into highly oriented pyrolytic graphite (HOPG). Stages 1 and 2 CoBr2 -GIC, stage-2 FeBr2 -GIC and stages 2, 3 and 5 NiBr2 -GIC have been studied by measuring the dc magnetization, ac susceptibility and heat capacity. A single-crystal sample of stage-3 CoBr2 -GIC was studied using neutron diffraction. The CoBr2 -GICs do not order at any observed temperature (down to 2 K for stages 1 and 2, 5.5K for stage-3). Stage-2 FeBr2 -GIC orders in three stages on cooling, with a transition from a paramagnetic phase to a phase with short-range two-dimensional ordering at 14.5 K, another to a phase with longer-range ordering within individual intercalant domains at 8.5 K and a third to a cluster-glass phase at 3 K. From do magnetization measurements, stages 2, and 3 NiBr2 -GIC order two-dimensionally at 6 K and 7 K, respectively. Stage-5 NiBr2 -GIC is superparamagnetic below 5 K. The Curie-Weiss law, modified to include a temperature-independent Van Vleck paramagnetism, is fit to the high-temperature dc susceptibility data. The need to include the temperature-independent term is also shown in magnetization curves. Simulations using Green's function calculations show that the absence of three-dimensional ordering down to 2 K in the CoBr2 and NiBr2 compounds is reasonable, but somewhat unexpected.</p>
URI: http://hdl.handle.net/11375/7258
Identifier: opendissertations/2542
3659
1397273
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
10.05 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue