Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7225
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSnodgrass, W.J.en_US
dc.contributor.authorWalker, Richard Roberten_US
dc.date.accessioned2014-06-18T16:38:40Z-
dc.date.available2014-06-18T16:38:40Z-
dc.date.created2009-07-16en_US
dc.date.issued1980-04en_US
dc.identifier.otheropendissertations/251en_US
dc.identifier.other1363en_US
dc.identifier.other900927en_US
dc.identifier.urihttp://hdl.handle.net/11375/7225-
dc.description.abstract<p>Field and laboratory investigations were carried out to explore sediment oxygen demand (SOD) and its component parts. An in situ measurement device was built, tested and applied in Hamilton Harbour. Techniques were developed to measure SOD and oxygen uptake by chemical oxidation (CSOD). Sediment samples were taken from Hamilton Harbour and seven other lakes in Northern Ontario and Cape Breton Island. All samples were analyzed for organic content and selected samples were placed in laboratory columns. Experiments were conducted in which oxygen uptake was measured within the columns under controlled conditions. Sediment oxygen demand was fractioned into portions attributable to chemical oxidation, biological respiration and direct macroinvertebrate respiration.</p> <p>Models were selected to describe the dependence of each portion of SOD on oxygen concentration and temperature. Where possible, mechanistic explanations are presented for the models selected. Results indicate that the chemical portion of SOD is dependent on oxygen concentration in the manner of a first-order reaction and that it responds to temperature change in a manner typical of a mixed bacterial community. At high oxygen concentrations, anaerobic metabolic activity is found to be the limiting factor in CSOD. Bacterial and macroinvertebrate oxygen uptake are dependent on oxygen concentration at low concentrations, following a Monod kinetic form. These fractions respond to temperature in the same fashion as the chemical portion. Macroinvertebrates contribute a large part of the direct respiration as well as having a profound effect on the total community respiration.</p>en_US
dc.subjectCivil and Environmental Engineeringen_US
dc.subjectCivil and Environmental Engineeringen_US
dc.titleModelling Sediment Oxygen Demand in Lakesen_US
dc.typethesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
4.14 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue