Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7189
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorStover, Harald D.en_US
dc.contributor.authorDowney, Jeffrey S.en_US
dc.date.accessioned2014-06-18T16:38:30Z-
dc.date.available2014-06-18T16:38:30Z-
dc.date.created2010-07-06en_US
dc.date.issued2000-09en_US
dc.identifier.otheropendissertations/2476en_US
dc.identifier.other3447en_US
dc.identifier.other1383699en_US
dc.identifier.urihttp://hdl.handle.net/11375/7189-
dc.description.abstract<p>This thesis addresses how the interactions between the reaction solvent and the forming polymer affects the morphology of the polymer formed in crosslinking polymerizations. Specifically, the mechanisms of nucleation, stabilization, growth and desolvation have been studied in the precipitation polymerization of divinylbenzene to monodisperse microspheres. These polymer beads have diameters in the micrometer range and may prove usefully for applications such as the separation of chemical mixtures using porous microspheres. The nucleation mechanism was found to proceed through transient microgels that are produced both by intermolecular reactions between oligomers and by further propagation. These microgels are transient and disappear from the reaction mixture at the same time as microspheres appear. This suggests that the microgels are the nuclei that grow to become the final microspheres. Internal curing reactions throughout the course of the polymerization transform the soft and deformable microspheres observed early in the reaction, into the rigid microspheres observed at the end of the reaction. As a result of both the nucleation and growth processes and the solvency of the polymerization medium, the microspheres have a gel surface that is formed in situ. When swollen with good solvents this surface gel serves as a steric stabilizer and when collapsed the microspheres flocculate together. Using a seeded polymerization method, the microspheres were shown to grow by a reactive growth mechanism. Oligomers were captured continuously from solution by radical reactions with existing microspheres. In contrast, microspheres having inert alkyl groups on their surface did not grow. Instead secondary or continuous nucleation was observed to produce new, smaller microspheres with broad size distributions. The microspheres observed in precipitation polymerization were then related to the morphologies more commonly observed in crosslinking polymerizations: microgels, macrogels, and coagulum. The volume occupied by the polymer was observed to decrease both with decreasing solvency of the continuous phase and with increasing crosslinking monomer concentration. Crosslinking in near theta-solvents was determined to be responsible for contraction of the polymer network into dense microspheres. The contraction of the polymer network is likely progressive, supporting the presence of a lightly crosslinked corona around the microspheres that acts as a steric stabilizer.</p>en_US
dc.subjectChemistryen_US
dc.subjectChemistryen_US
dc.titlePrecipitation polymerization of divinylbenzene to monodisperse microspheres: An investigation of the particle formation mechanismen_US
dc.typethesisen_US
dc.contributor.departmentChemistryen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.13 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue