Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/7073
Title: Finite Group Actions on Smooth 4-Manifolds with Indefinite Intersection Form
Authors: Klemm, Michael
Advisor: Hambleton, I.
Department: Mathematics
Keywords: Mathematics;Mathematics
Publication Date: May-1995
Abstract: <p>In this thesis finite cyclic group actions on S² x S² and its moduli space of anti-self-dual connections will be investigated. In the first step the equivariant version of the Donaldson gluing construction of anti-self-dual connections will be developed. We obtain an equivariant obstruction map which provides an equivariant local model of the anti-self-dual moduli space. Then we investigate the special case when we glue the product connection on a trivial SU(2)-bundle over S² x S² with two concentrated anti-instantons. We can achieve transversality of the obstruction map by an equivariant perturbation of the conformal class. We obtain a 10-dimensional equivariant local model which is diffeomorphic to R⁸ x R X S¹. The action on R⁸ is the direct sum of the isotropy representations. The action on the circle depends on the rotation numbers and the self-dual harmonic form. Moreover, there exists an equivariant perturbation of the conformal class so that there are no reducible anti-self-dual connections over S² x S² besides the trivial product connection. These results can be used to show that under certain assumptions the rotation numbers of the isotropy representations of a finite cyclic, smooth action on S² x S² coincide with those of some linear action.</p>
URI: http://hdl.handle.net/11375/7073
Identifier: opendissertations/2369
3361
1375916
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.56 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue