Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6944
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWaddington, J.C.en_US
dc.contributor.authorHackman, Gregen_US
dc.date.accessioned2014-06-18T16:37:34Z-
dc.date.available2014-06-18T16:37:34Z-
dc.date.created2010-06-28en_US
dc.date.issued1995-10en_US
dc.identifier.otheropendissertations/2248en_US
dc.identifier.other3306en_US
dc.identifier.other1373232en_US
dc.identifier.urihttp://hdl.handle.net/11375/6944-
dc.description.abstract<p>As part of a systematic survey of superdeformation in nuclei in the vicinity of ¹⁴³Eu, six superdeformed bands in ¹⁴²Sm, ¹⁴²Eu and ¹⁴⁴Eu have been studied by their Υ-ray decay following heavy-ion fusion-evaporation reactions. All of these bands are based on a "second minimum" shell gap associated with the superdeformed (2:1 prolate ellipsoid of rotation) nuclear shape at neutron number N=80 and proton number Z=63. The first band in ¹⁴²Sm and the band in ¹⁴²Eu have been studied with the 8π spectrometer, while the bands in ¹⁴⁴Eu and the excited band in ¹⁴²Sm have been discovered with the GAMMASPHERE array. The Υ-ray decays of these superdeformed structures are compared to collective rotational models, and specifically to state-of-the-art Cranked Shell Model (CSM) calculations for Nilsson, Woods-Saxon, and Hartree-Fock models of the nuclear potential. The predicted roles of specific orbitals in the A~140 mass region are compared to quantities derived from the experiments and where possible, configurations with respect to an ¹⁴³Eu core are proposed.</p> <p>The first ¹⁴²Sm band consists of 19 Υ-ray transitions with an intensity of 0.5% of the reaction channel, and its behaviour is best described in the calculations as an ¹⁴³Eu superdeformed core with a hole in an Nosc=5 proton orbital. The second excited band consists of 15 transitions with an intensity ~ 20% that of the first band, of which the transitions above ~ 1 MeV are identical in energy to those in a ¹⁴⁶Gd band. This new band, which represents the second example of a two-proton, two-neutron identical bands pair, is most likely a ¹⁴⁶Gd superdeformed core with four holes in low Nosc orbitals. Structures based on simple excitations of the proton hole of the first band likely comprise a quasi-continuum ridge structure.</p> <p>The ¹⁴²Eu band has 15 transitions and an intensity of 1.2%. The detailed behavior of this band suggests that its configuration is an Nosc=5 neutron hole in the ¹⁴³Eu core. Such a configuration is not predicted to be energetically favourable.</p> <p>The three ¹⁴⁴Eu bands all have population intensities of < 0.2 % relative to the reaction cross-section. Two of the ¹⁴⁴Eu bands, with 17 and 18 transitions respectively, are quite likely Nosc=6 neutron particle states coupled to the ¹⁴³Eu core. The behavior of the third band indicates occupation of an Nosc=7 neutron intruder which does not influence the shape of the ¹⁴³Eu core.</p>en_US
dc.subjectPhysicsen_US
dc.subjectPhysicsen_US
dc.titleStructure of Superdeformed Bands Near the N=80 Shell Gapen_US
dc.typethesisen_US
dc.contributor.departmentPhysicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.95 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue