Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6839
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMishra, Ram K.en_US
dc.contributor.authorMarcotte, Eric R.en_US
dc.date.accessioned2014-06-18T16:37:06Z-
dc.date.available2014-06-18T16:37:06Z-
dc.date.created2010-05-27en_US
dc.date.issued1998-08en_US
dc.identifier.otheropendissertations/2142en_US
dc.identifier.other2757en_US
dc.identifier.other1332919en_US
dc.identifier.urihttp://hdl.handle.net/11375/6839-
dc.description.abstract<p>There is growing evidence that factors other than cell-surface recetors are involved in regulating the sensitivity of cells to external signals. In particular, G proteins have been implicated in the increased sensitivity of numerous receptor systems under a variety of conditions (Mishra et al., 1997). The goal of this research project was to determine the role of G proteins in mediating dopamine receptor supersensitivity in Parkinson's disease. Prelimary studies of G protein levels in human post-mortem brain tissue proved inconclusive, due to the limited availability and variability of tissue samples. Subsequent studies in the 6-hydroxydopamine (6-OHDA) rat lesion model of Parkinson's disease revealed that stimulatory G protein levels are persistently elevated following denervation (Marcotte et al., 1994). These G proteins are presumably coupled to dopamine D₁ receptors, which show clear evidence of supersensitivity despite apparently normal receptor levels. This result supports the hypothesis that G proteins are involved in the maintenance of dopamine receptor supersensitivity (Marcotte and Mishra, 1997). Stimulatory G proteins acutely following MPTP mouse model, with decreased stimulatory G proteins acutely following MPTP treatment, and increased stimulatory G proteins after long-term recovery (Marcotte et al., 1998a). Although the significance of these findings is unclear, they provide additional support for the hypothesis that G proteins are modulated in response to dopaminergic denervation. Attempts to measure functional changes in stimulatory G protein activity in the rat striatum proved unsuccessful, consistent with the available literature. Specifically, neither the GTPase nor a specific GTP binding assay was able to consistently detect stimulatory G protein activity following dopamine D₁ receptor stimulation. To provide direct evidence for the role of Golf in mediating dopamine receptor supersensitivity, Golf antisense oligonucleotides were administered to 6-OHDA lesioned rats. Intrastriatal infusion of Gold antisense, but not control sense oligonucleotides, specifically reduced apomorphine-induced rotational behaviour and Gold levels. The effects of Golf antisense infusion were at least partially reversible, supporting a specific antisense mechanism of action. However, one of the control oligonucleotides, Golf missense, consistently reduced rotational behaviour and G protein levels in a non-specific fashion. This effect was dose- and sequence-dependent, and may be due to a non-specific binding to other nucleotides or proteins (Marcotte and Mishra, 1998). Taken together, these studies support the hypothesis that stimulatory G proteins are involved in mediating dopamine D₁ receptor supersensitivity. Further characterization of the effects of in vivo antisense oligonucleotides may provide more definitive conclusions regarding the role of G proteins in mediating this phenomenon.</p>en_US
dc.subjectMedical Sciencesen_US
dc.subjectMedical Sciencesen_US
dc.titleG PROTEINS AND PARKINSON'S DISEASE: THE ROLE OF SIGNAL TRANSUCING G PROTEINS IN MEDIATING DOPAMINE RECEPTOR SUPERSENSITIVITY IN PARKINSON'S DISEASEen_US
dc.typethesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
8.61 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue