Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6789
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPerdue, Mary H.en_US
dc.contributor.authorSaunders, Russell Paulen_US
dc.date.accessioned2014-06-18T16:36:55Z-
dc.date.available2014-06-18T16:36:55Z-
dc.date.created2010-06-01en_US
dc.date.issued1998-04en_US
dc.identifier.otheropendissertations/2095en_US
dc.identifier.other2804en_US
dc.identifier.other1338008en_US
dc.identifier.urihttp://hdl.handle.net/11375/6789-
dc.description.abstract<p>The gastrointestinal tract is particularly sensitive to stress. Stress-induced gastric ulceration and stress-induced alterations in motility have been examined. The purpose of my studies was to define stress-induced changes in the intestinal epithelium and the mechanisms involved in the epithelial responses. Wistar Kyoto rats were stressed by restraint. Jejunal and colonic tissues from stressed or control rats were removed and parametres of epithelial physiology were studied in Ussing chambers. Acute stress caused a significant increase in intestinal chloride ion secretion. In addition, tissues from stressed rats demonstrated impaired responses to neural activation. Compared to controls tissues from stressed rats were also found to have increased permeability to ions, and small inert probes, and increased permeability to a macromolecular protein. In spite of these functional abnormalities, the mucosa showed no signs of damange. Our next series of experiments showed that peripheral cholinergic nerves and corticotrophin releasing factor were responsible for mediating these epithelial responses to acute stress. Pretreatment with atropine (jejunum) or a corticotropin-releasing factor antagonist (colon) prevented the stress-induced pathophysiology, while administering corticotropin-releasing factor mimicked the colonic responses. These studies also showed that the Wistar Kyoto strain of rats developed more extreme intestinal abnormalities to stress than the parental Wistar strain, most likely due to the fact that Wistar Kyoto rats have less cholinesterase activity. In summary, my studies showed that stress impaired epithelial function along the intestinal tract. We speculate that in susceptible individuals, acute stress can cause the epithelial barrier to become leakly allowing greater uptake of small proinflammatory molecules (bacterial products) as well as larger macromolecules (antigens) from the lumen. Subsequent stimulation of immunocytes may initiate or exacerbate inflammation.</p>en_US
dc.subjectMedical Sciencesen_US
dc.subjectMedical Sciencesen_US
dc.titleAcute Stress-Induced Pathophysiology of Intestinal Epithelium in Stress Susceptible Wistar Kyoto Ratsen_US
dc.typethesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.68 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue