Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6554
Title: Nutrient Residence Times in Relation to the Trophic Condition of Lakes
Authors: Janus, Lorraine Lee
Advisor: Vollenweider, Richard Albert
Department: Biology
Keywords: Biology;Biology
Publication Date: Mar-1989
Abstract: <p>This thesis is concerned with defining systematic relationships between nutrient flow rates in aquatic ecosystems and their overall biological productivity. The most significant finding was that phosphorus residence time produced a consistent pattern relative to the trophic condition of freshwater lakes and reservoirs which allows both characterization of trophic state and more precise calculation of the concentration response to loadings as commonly applied in lake management.</p> <p>Nutrient residence times were examined from the perspective of two data types. The data types included time series information on nine individual lake cases and single year cross-sectional information on 220 waterbodies of the OECD Programme on Eutrophication.</p> <p>The nine case histories gave insight into the applicability of cross-sectionally derived models. These cases showed that sedimentation rates of phosphorus in a given lake varied tremendously from year to year and therefore models based on the assumption of a constant rate are in most instances insufficient. Case histories also showed that phosphorus relative residence times followed a remarkably consistent pattern of increase with an increase in trophic status regardless of te number of types of underlying mechanisms in control of nutrient flows. This increase is related to an acceleration of phosphorus recycling mechanisms rather than a decline in its gross deposition rate. The net decelleration of phosphorus flow rates creates a shift in the relative importance of elimination pathways, from deposition in the sediments to removal via flushing with increasing eutrophication. Lastly, case histories demonstrated that concentration ratios of lake/inflow gave reasonable estimates of nutrient relative residence times as calculated from budget information. Transposing this, the distinctly different dynamics according to tropic category reflected in the cross-sectional concentration ratio data may be interpreted as a functional pattern.</p> <p>The cross-sectional data indicated that in the case of phosphorus, relative residence time was best described by a different multiple regression equation for each trophic category whereas there was no difference in nitrogen relative residence time according to trophic category. Practical application of this result is in refinement of the calculation of critical loads when the trophic status of a lake is known.</p> <p>Nutrient limitation judged on the basis of most rapid flow rate implies that phosphorus limitation is far more common that nitrogen limitation, even in eutrophic waterbodies. The relative flow rates is always greater than 1 in oligotrophic and mesotrophic waterbodies, and may be greater than 1 in eutrophic waterbodies. This ration only drops below 1 in some eutrophic waterbodies. Therefore values less that 1 are not necessarily a consequence of eutrophication.</p> <p>Phosphorus relative residence time was found to be a simple but highly integrative measure capable of characterizing trophic state and its temporal evolution.</p>
URI: http://hdl.handle.net/11375/6554
Identifier: opendissertations/1862
3039
1356828
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
26.76 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue