Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6428
Title: The Structure of Homoserine Dehydrogenase from Saccharomyces cerevisiae
Authors: DeLaBerre, Byron
Advisor: Berghuis, A.M.
Department: Biochemistry
Keywords: Biochemistry;Biochemistry
Publication Date: 2000
Abstract: <p>The core of this work is the structural determination of the enzyme homoserine dehydrogenase from Saccharomyces cerevisiae . The structure has been determined in three different states of ligation: apo form, in a binary form complexed with nicotinamide cofactor, and in a ternary form complexed with both L-homoserine and a nicotinamide cofactor analogue. The structures were determined by X-ray diffraction studies to resolutions of 2.3, 2.3, and 2.6 Å, respectively. Due to problems with non-isomorphism, the measured amplitudes were phased from a single heavy atom derivative. Data averaging about a local two-fold axis (non-crystallographic symmetry) was used in combination with other density modification techniques to resolve the phase ambiguity problem arising from single isomorphous replacement. Because traditional techniques failed to locate the axis, a novel technique for locating the symmetry axis was devised. The fold of the catalytic/substrate binding portion of the structure establishes homoserine dehydrogenase as a unique dehydrogenase. The ternary complex reveals that the amino acid substrate binds to the enzyme in an unusual manner. Site directed mutagenesis data based upon the structure validates the selection of active site residues. Furthermore, the combination of residues employed for catalysis of the hydride transfer suggests that the bound form may be a gem -diol form. Reaction mechanisms in both the forward and reverse directions are proposed. This is the first structural determination of homoserine dehydrogenase. A comparison of the Saccharomyces cerevisiae homoserine dehydrogenase primary sequence with sequences from other homoserine dehydrogenases reveals that the fold of this enzyme is conserved across species. The structure explains the effect monovalent cations have upon the enzyme, how it is affected by an inhibitory compound and suggests a possible mechanism for allosteric control.</p>
URI: http://hdl.handle.net/11375/6428
Identifier: opendissertations/1741
3160
1365447
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
7.96 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue