Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6377
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSimmons, John G.en_US
dc.contributor.advisorThompson, David A.en_US
dc.contributor.authorLetal, Gregoryen_US
dc.date.accessioned2014-06-18T16:35:15Z-
dc.date.available2014-06-18T16:35:15Z-
dc.date.created2010-06-22en_US
dc.date.issued2000-04-27en_US
dc.identifier.otheropendissertations/1693en_US
dc.identifier.other3208en_US
dc.identifier.other1367359en_US
dc.identifier.urihttp://hdl.handle.net/11375/6377-
dc.description.abstract<p>An integrated DFB laser and electroabsorption modulator was fabricated by using a novel quantum-well-intermixing technique that uses the defects from a layer of InP grown by He-plasma-assisted gas source molecular beam epitaxy (He*-InP). This is the first investigation into the He*-InP defect induced intermixing, and the first time a device has been fabricated by using this technique. The first part of this thesis outlines the first investigation into the effects of defects within a layer of He*-InP on annealing-induced quantum-well intermixing. Such a layer can be used to either decrease or increase the total amount of intermixing depending upon the placement of the He*-InP layer relative to the QW and the thickness of the layer. When the layer is far from the QW (∼0.5μm ), the total amount of intermixing is decreased. When the layer is close to the QW, the total amount of intermixing can be increased as well as being accompanied by a reduction of the photoluminescence intensity. The main benefit of this intermixing technique is that, unlike dielectric-enhanced intermixing, it is possible to regrow over material that has been intermixed by the He*-InP defect. The He*-InP defect-induced-intermixing technique has been applied to the fabrication of an integrated electroabsorption modulator and a distributed feedback laser. The techniques developed to fabricated the integrated device are discussed in detail in the second part of the thesis, followed by the device results. The device characteristics vary with device geometry. For example, the extinction ratios range from 9-16dB for voltage of 3V applied to a 400μm modulator due to the variation of the lasing wavelength with ridge width (for a 3QW structure). The threshold currents of discrete, 600μm long DFB lasers ranged from 18 to 35mA depending on its ridge width and where on wafer it was taken from.</p>en_US
dc.subjectEngineering Physicsen_US
dc.subjectEngineering Physicsen_US
dc.titleIntegrated distributed feedback lasers and electroabsorption modulators fabricated using helium-plasma-assisted indium phosphide defect induced quantum well intermixingen_US
dc.typethesisen_US
dc.contributor.departmentEngineering Physicsen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
5.89 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue