Identification of cell cycle regulatory proteins that interact with HCF-1
Loading...
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
<p>HCF-l, a transcriptional regulatory protein, was originally identified as an accessory factor for the induction of Herpes Simplex Virus immediate-early genes by the viral transactivator VPl6. Recently, HCF-1 has emerged as a chromatin-binding transcriptional co-regulator that plays an essential role in cellular proliferation. In order to further characterize the function of HCF-l and determine the mechanisms by which it contributes to cellular proliferation we have sought to identify novel HCF-1 interaction partners and elucidate their function. In this thesis, we describe the identification of key cell cycle regulatory proteins, Miz-1 and E2F-4, as novel HCF-1 interaction partners. Miz-1, a transcription factor that activates transcription of cell cycle inhibitory genes, is an integral part of the anti-mitogenic TGF-β pathway and contributes to cell cycle arrest following DNA damage and differentiation signals. HCF-1 associates with the Miz-1 transactivation domain and antagonizes Miz-1- dependent transcriptional activation of p15INK4b, a cyclin-dependent kinase inhibitor, suggesting that HCF-1 can indirectly promote pRB family inactivation, and thus, cellular proliferation. E2F-4, a member of the E2F family of transcription factors that regulate cellular proliferation in conjunction with the retinoblastoma family of proteins, is involved in repression of E2F responsive genes at GO/G1 and consequently, cell cycle arrest or differentiation. Overexpression of E2F-4 suppresses HCF-1-mediated rescue of cellular proliferation, indicating an antagonistic role for these proteins in the cell cycle. Together, these findings contribute to identifying additional HCF-1 interaction partners and may provide insight into the molecular mechanism of HCF-1-mediated cell cycle progression.</p>
Description
HCF-l, a transcriptional regulatory protein, was originally identified as an accessory factor for the induction of Herpes Simplex Virus immediate-early genes by the viral transactivator VP16. Recently, HCF-1 has emerged as a chromatin-binding transcriptional co-regulator that plays an essential role in cellular proliferation. In order to further characterize the function of HCF-1 and determine the mechanisms by which it contributes to cellular proliferation we have sought to identify novel HCF-1 interaction partners and elucidate their function. In this thesis, we describe the identification of key cell cycle regulatory proteins, Miz-1 and E2F-4, as novel HCF-1 interaction partners. Miz-1, a transcription factor that activates transcription of cell cycle inhibitory genes, is an integral part of the anti-mitogenic TGF-β pathway and contributes to cell cycle arrest following DNA damage and differentiation signals. HCF-1 associates with the Miz-1 transactivation domain and antagonizes Miz-1-dependent transcriptional activation of p15INK4b, a cyclin-dependent kinase inhibitor, suggesting that HCF-1 can indirectly promote pRB family inactivation, and thus, cellular proliferation. E2F-4, a member of the E2F family of transcription factors that regulate cellular proliferation in conjunction with the retinoblastoma family of proteins, is involved in repression of E2F responsive genes at G0/G1 and consequently, cell cycle arrest or differentiation. Overexpression of E2F-4 suppresses HCF-1-mediated rescue of cellular proliferation, indicating an antagonistic role for these proteins in the cell cycle. Together, these findings contribute to identifying additional HCF-1 interaction partners and may provide insight into the molecular mechanism of HCF-1-mediated cell cycle progression.