Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/6221
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAnderson, R.B.en_US
dc.contributor.authorLee, Boon Chungen_US
dc.date.accessioned2014-06-18T16:34:32Z-
dc.date.available2014-06-18T16:34:32Z-
dc.date.created2010-04-04en_US
dc.date.issued1982-11en_US
dc.identifier.otheropendissertations/1548en_US
dc.identifier.other2145en_US
dc.identifier.other1261016en_US
dc.identifier.urihttp://hdl.handle.net/11375/6221-
dc.description.abstract<p>The methanation of carbon monoxide and carbon dioxide was studied over Raney nickel. The catalyst was characterized by chemisorption techniques. A differential plug-fIow reactor was used to obtain kinetic data. The reaction rates were investigated as a function of temperature, reactants and products concentrations. The power rate law was found inadequate in representing the kinetic data of carbon dioxide methanation. The orders of reaction for hydrogen and carbon monoxide were obtained. Carbonaceous species were found on the catalyst surface after methanation reaction, which could react with hydrogen give methane. Multilayers of carbon species were deposited on the catalyst surface during CO methanation; less than a monolayer was found when carbon dioxide was used as feed. The effects of reaction conditions on the amount of residual carbon was also investigated.</p> <p>The data in general agrees with a mechanism involving the hydrogenation of carbonaceous species as the rate determining step. The differences between CO and CO₂ methanations were also discussed.</p> <p>The carbon chain growth process in the Fischer-Tropsch synthesis was simulated using available data in the literature. The simulation was done by representing the hydrocarbon chains by numbers stored in vectors. Various chain growth schemes were tested. The results suggested that the carbon chain growth process could involve the stepwise additions of both one-carbon and two-carbon units.</p>en_US
dc.subjectChemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleMethanation of Carbon Monoxide and Carbon Dioxide on Raney Nickel, and Computer Simulation of Chain Growth in the Fischer-Tropsch Synthesisen_US
dc.typethesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
6.72 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue