Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/5841
Title: Resolving the Free Boundary Problem for Electron-Hole Drops
Authors: Patterson, Roger Bazeley Lynn
Advisor: Kirkaldy, J.S.
Department: Physics
Keywords: Physics;Physics
Publication Date: Apr-1982
Abstract: <p>The prediction of the stable configuration of a cloud of electron-hole drops involves the resolution of a "free boundary" problem. That is to say, the constraint of steady state relationships is not enough to uniquely determine a stable steady state. There are an infinite number of states which satisfy the boundary conditions. If these stationary states are metastable due to isolation or freedom from large scale fluctuations then different system histories will produce different observable states and hysteresis phenomena. However, if configurational changes can occur through fluctuations, either by creation or annihilation of drops, however slowly, it is necessary to specify an optimizing process to identify a unique stable solution.</p> <p>In this thesis a simple model is used to describe the cloud, explicitly demonstrating the "free boundary" problem. The optimizing function is taken to the rate of entropy production, the optimum being a maximum in the dissipation. The optimization process leads to linear global and local flux-force relationships and to explicit expressions for drop density and exciton gas density which are in good functional and quantitative accord with experiments.</p>
URI: http://hdl.handle.net/11375/5841
Identifier: opendissertations/119
1495
914661
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.76 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue