Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Engineering
  4. Department of Mechanical Engineering
  5. Mechanical Engineering Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/31151
Title: Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles
Authors: Bustos R
Gadsden SA
Al-Shabi M
Mahmud S
Department: Mechanical Engineering
Keywords: 40 Engineering;34 Chemical Sciences;3406 Physical Chemistry;Bioengineering;7 Affordable and Clean Energy
Publication Date: 1-Jan-2023
Publisher: MDPI
Abstract: To ensure reliable operation of electrical systems, batteries require robust battery monitoring systems (BMSs). A BMS’s main task is to accurately estimate a battery’s available power, referred to as the state of charge (SOC). Unfortunately, the SOC cannot be measured directly due to its structure, and so must be estimated using indirect measurements. In addition, the methods used to estimate SOC are highly dependent on the battery’s available capacity, known as the state of health (SOH), which degrades as the battery is used, resulting in a complex problem. In this paper, a novel adaptive battery health estimation method is proposed. The proposed method uses a dual-filter architecture in conjunction with the interacting multiple model (IMM) algorithm. The dual filter strategy allows for the model’s parameters to be updated while the IMM allows access to different degradation rates. The well-known Kalman filter (KF) and relatively new sliding innovation filter (SIF) are implemented to estimate the battery’s SOC. The resulting methods are referred to as the dual-KF-IMM and dual-SIF-IMM, respectively. As demonstrated in this paper, both algorithms show accurate estimation of the SOC and SOH of a lithium-ion battery under different cycling conditions. The results of the proposed strategies will be of interest for the safe and reliable operation of electrical systems, with particular focus on electric vehicles.
URI: http://hdl.handle.net/11375/31151
metadata.dc.identifier.doi: https://doi.org/10.3390/app13021132
ISSN: 2076-3417
2076-3417
Appears in Collections:Mechanical Engineering Publications

Files in This Item:
File Description SizeFormat 
082-applsci-13-01132-v2.pdf
Open Access
Published version9.12 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue