Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Departments and Schools
  3. Faculty of Science
  4. Department of Biology
  5. Biology Publications
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/30733
Title: Evaluation of observed and projected extreme climate trends for decision making in Six Nations of the Grand River, Canada
Authors: Deen TA
Arain MA
Champagne O
Chow-Fraser P
Nagabhatla N
Martin-Hill D
Department: Biology
Keywords: 37 Earth Sciences;3701 Atmospheric Sciences;3702 Climate Change Science;13 Climate Action
Publication Date: Dec-2021
Publisher: Elsevier
Abstract: Hydrometeorological events have been the predominant type of natural hazards to affect communities across Canada. While climate change is a concern to all Canadians, Indigenous communities in Canada have been disproportionately more affected by these extreme climate events than non-Indigenous communities. As the impacts of climate change intensify, it becomes increasingly important that high-resolution climate services are made available to Indigenous decision makers for the development of climate change adaptation plans. This paper examined extreme climate trends in the Six Nations of the Grand River reserve, the most populated Indigenous community in Canada. A set of 12 indices were used to evaluate changes in extreme climate events from 1951 to 2013, and 2006 to 2099 under Representative Concentration Pathways (RCP) 4.5 and 8.5. Results indicated that from 1951 to 2013, Six Nations became warmer and wetter with an average temperature increase of 0.7 °C and precipitation increase of 42 mm. Over this period, the frequency and duration of extreme heat and extreme precipitation events also increased, while extreme cold events decreased. In the future (2006 to 2099), temperature is expected to increase by 3 to 6 °C, while seasonal precipitation is expected to increase in winter, early spring, and fall. Projected rate of increase of heatwaves is 0.4 to 1.5 days per year and extreme annual rainfall events is 0.2 to 0.5 mm per year under both RCP scenarios. The climate information and data provide by this study will help Six Nations’ decision makers in planning for climate change impacts.
URI: http://hdl.handle.net/11375/30733
metadata.dc.identifier.doi: https://doi.org/10.1016/j.cliser.2021.100263
ISSN: 2405-8807
2405-8807
Appears in Collections:Biology Publications

Files in This Item:
File Description SizeFormat 
Deen et al. 2021.pdf
Open Access
13.7 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue