Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/30569
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMcClelland, Grant-
dc.contributor.authorWong, Emily-
dc.date.accessioned2024-11-13T23:29:57Z-
dc.date.available2024-11-13T23:29:57Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/11375/30569-
dc.description.abstractAmbient temperature is known to drive changes in the thermal physiology of mammals, such as an increase in the capacity for thermogenesis in winter. Previous work has shown that acclimation to chronic cold increases the capacity for non-shivering thermogenesis (NST) and thermogenic capacity (cold-induced maximal oxygen consumption, V̇O2max) in deer mice (Peromyscus maniculatus). Photoperiod, is an important driver of seasonal changes in physiology. In the wild, animals are attuned to seasonal changes in temperature and photoperiod. However, the independent and combined effects of temperature and photoperiod on the capacity for NST in small mammals, such as the deer mouse, are still not fully understood. To address this, we acclimated deer mice to long or short photoperiods (12h or 8h light), in either thermoneutral or cold conditions (30°C or 5°C). To simulate the fall conditions in their natural habitat (Nebraska) we gradually reduced either daylength, temperature, or both over 4 weeks and acclimated mice an additional 4 weeks at those conditions. After the 8 weeks of acclimation, we determined NST and V̇O2max. We found that cold and short photoperiod were necessary to increase NST, and either short photoperiod or cold was sufficient to increase V̇O2max. There were no corresponding differences in iBAT mass, lipid droplet morphology, nor in mitochondrial content. However, there was a corresponding increase in UCP1 content per unit mitochondria. These data highlight the importance of both photoperiod and temperature as cues to prepare thermogenic responses beneficial as winter approaches.en_US
dc.language.isoenen_US
dc.subjectSeasonen_US
dc.subjectDeer mouseen_US
dc.subjectThermogenic capacityen_US
dc.titleSimulating Season: The Effects of Photoperiod and Temperature on Thermogenesis in Deer Miceen_US
dc.typeThesisen_US
dc.contributor.departmentBiologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Wong_Emily_W_October2024_MSc.pdf
Embargoed until: 2025-10-31
4.87 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue